References
[1] Brand, J.S., West, J., Tuffnell, D., Bird, P.K., Wright, J., Tilling, K. and Lawlor, D.A., 2018. Gestational diabetes and ultrasound-assessed fetal growth in South Asian and White European women: findings from a prospective pregnancy cohort. BMC medicine, 16(1), pp.1-13.
[2] Scifres, C.M., Feghali, M., Dumont, T., Althouse, A.D., Speer, P., Caritis, S.N. and Catov, J.M., 2015. Large-for-gestational-age ultrasound diagnosis and risk for cesarean delivery in women with gestational diabetes mellitus. Obstetrics & Gynecology, 126(5), pp.978-986.
[3] Popova, P.V., Klyushina, A.A., Vasilyeva, L.B., Tkachuk, A.S., Vasukova, E.A., Anopova, A.D., Pustozerov, E.A., Gorelova, I.V., Kravchuk, E.N., Li, O. and Pervunina, T.M., 2021. Association of common genetic risk variants with gestational diabetes mellitus and their role in GDM prediction. Frontiers in endocrinology, 12, p.628582.
[4] Artzi, N.S., Shilo, S., Hadar, E., Rossman, H., Barbash-Hazan, S., Ben-Haroush, A., Balicer, R.D., Feldman, B., Wiznitzer, A. and Segal, E., 2020. Prediction of gestational diabetes based on nationwide electronic health records. Nature medicine, 26(1), pp.71-76.
[5] Zhang, X., Zhao, X., Huo, L., Yuan, N., Sun, J., Du, J., Nan, M. and Ji, L., 2020. Risk prediction model of gestational diabetes mellitus based on nomogram in a Chinese population cohort study. Scientific Reports, 10(1), pp.1-7.
[6] Amirian, A., Mahani, M.B. and Abdi, F., 2020. Role of interleukin-6 (IL-6) in predicting gestational diabetes mellitus. Obstetrics & Gynecology Science, 63(4), pp.407-416.
[7] El-Rashidy, N., ElSayed, N.E., El-Ghamry, A. and Talaat, F.M., 2022. Utilizing fog computing and explainable deep learning techniques for gestational diabetes prediction. Neural Computing and Applications, pp.1-20.
[8] Naseem, A., Habib, R., Naz, T., Atif, M., Arif, M. and Allaoua Chelloug, S., 2022. Novel Internet of Things Based Approach Towards Diabetes Prediction Using Deep Learning Models. Frontiers in Public Health, p.2848.
[9] Liu, Y., Wang, Y., Zhang, Y. and Cheng, R., 2021. Detection of Gestational Diabetes Mellitus and Influence on Perinatal Outcomes from B-Mode Ultrasound Images Using Deep Neural Network. Scientific Programming, 2021, pp.1-8.
[10] Davidson, S.J., Susan, J., Britten, F.L., Wolski, P., Sekar, R. and Callaway, L.K., 2021. Fetal ultrasound scans to guide management of gestational diabetes: Improved neonatal outcomes in routine clinical practice. Diabetes Research and Clinical Practice, 173, p.108696.