References
1. I.I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M.U.G. Kraemer, K. Khan,Pneumonia of unknown etiology in Wuhan, China: Potential for internationalspread via commercial air travel, Journal of Travel Medicine (2020).
2. D.S. Hui, I.E. Azhar, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing2019-nCoV epidemic threat of novel coronaviruses to global health—the latest2019 novel coronavirus outbreak in Wuhan, China, International Journal ofInfectious Diseases 91 (2020) 264–266.
3. https://edition.cnn.com/interactive/2020/health/coronavirus-maps-and-cases/
4. A.O. Adedeji, S.G. Sarafianos, Antiviral drugs specific for coronavirusesin preclinical development. Current Opinionin Virology8 (2014) 45–53. doi:10.1016/j.coviro.2014.06.002.
5. P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, et al. Characterization of a novel coronavirus associated with severeacute respiratory syndrome. Science. 300 (2003) 1394–9. doi:10.1126/science.1085952.
6. A. Berger, C.Drosten, H.W. Doerr, M. Sturmer, W. Preiser, Severe acute respiratorysyndrome (SARS)–paradigm of an emerging viral infection. Journal ofClinical Virology29(1) (2004) 13–22.
7. W. Liang, M.L. McLaws, M. Liu, J. Mi, D.K. Chan, Hindsight: a re-analysisof the severe acute respiratory syndrome outbreak in Beijing. PublicHealth. 121(10) (2007) 725–33. doi: 10.1016/j.puhe.2007.02.023.
8. S. Shigeta, T. Yamase, Current status of anti-SARS agents. AntiviralChemistry & Chemotherapy16(1) (2005) 23–31. doi: 10.1177/095632020501600103.
9. P.K. Cheng, D.A. Wong, L.K. Tong, S.M. Ip, A.C. Lo, C.S. Lau, et al. Viralshedding patterns of coronavirus in patients with probable severeacute respiratory syndrome. Lancet. 363(9422) (2004) 1699–700. doi:10.1016/S0140-6736(04)16255-7.
10. H.A. Dwosh, H.H. Hong, D. Austgarden, S. Herman, R. Schabas, Identificationnd containment of an outbreak of SARS in a community hospital.Can Med Assoc J. 168(11): (2003) 1415–20.
11. Zhang XW, Yap YL. Exploring the binding mechanism of the mainproteinase in SARS-associated coronavirus and its implication toanti-SARS drug design. Bioorg Med Chem. 2004;12(9):2219–23. doi:10.1016/j.bmc.2004.02.015.
12. Groneberg DA, Hilgenfeld R, Zabel P. Molecular mechanisms of severeacute respiratory syndrome (SARS). Respir Res. 2005;6:8. doi:10.1186/1465-9921-6-8.
13. Lin PY, Chou CY, Chang HC, Hsu WC, Chang GG. Correlation betweendissociation and catalysis of SARS-CoV main protease. Arch BiochemBiophys. 2008;472(1):34–42. doi: 10.1016/j.abb.2008.01.023.
14. Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha SA, Chase P, etl. Discovery, synthesis, and structure-based optimization of a seriesof N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188)as potent noncovalent small molecule inhibitors of the severe acuterespiratory syndrome coronavirus (SARS-CoV) 3CL protease. J MedChem. 2013;56(2):534–46. doi: 10.1021/jm301580n.
15. www.who.int
16. M.R. Dayer, S. Taleb-Gassabi, M.S. Dayer, Lopinavir; A Potent Drug against Coronavirus Infection: Insight fromMolecular Docking Study. Arch Clin Infect Dis. 12(4) (2017) 1-7.
17. (http://www.rcsb.org/pdb)
18. S.M.D. Rizvi,S. Shakil, M. Haneef, A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. Excil journal12(2013) 831–857.PMCID: PMC4669947.
19. O. Trott, A. J. Olson, AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461. DOI 10.1002/jcc.21334
20. Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 1998;7:1884–1897. doi: 10.1002/pro.5560070905.
21. Y.W. Tan, M.J.Y. YanAng, Q.Y. Lau, A. Poulsen, F. M. Ng, S.W. Then, J. Peng, J. Hill, W.J. Hong, C.S. BrianChia, J.J.H. Chu, Antiviral activities of peptide based covalent inhibitors of the Enterovirus 71 3C protease. Scientific Reports 6 (2016) 1-8. DOI: 10.1038/srep33663.