Aroniadi, C., & Beligiannis, G. N. (2024). Solving the Fuzzy Transportation Problem by a Novel Particle Swarm Optimization Approach. Applied Sciences, 14(13), 5885.
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141–B-164. https://doi.org/10.1287/mnsc.17.4.B141
Chanas, S., Kołodziejczyk, W., & Machaj, A. (1984). A fuzzy approach to the transportation problem. Fuzzy sets and Systems, 13(3), 211-221. https://doi.org/10.1016/0165-0114(84)90057-5
Chen, S.-J., & Hwang, C.-L. (1992). Fuzzy multiple attribute decision making: Methods and applications. Springer. https://doi.org/10.1007/978-3-642-46768-4
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613–626. https://doi.org/10.1080/00207727808941724
Ebrahimnejad, A. (2016). A new method for solving fully fuzzy transportation problems. Journal of Intelligent & Fuzzy Systems, 30(1), 185–194. https://doi.org/10.3233/IFS-151865
Elumalai, P., Prabu, K., & Santhoshkumar, S. (2017). Fuzzy transportation problem using hexagonal fuzzy numbers by robust ranking method. Emperor Int. J. Finance. Manag. Res. UGC Jr, 45308, 52-58.
Kaufmann, A., & Gupta, M. M. (1985). Introduction to fuzzy arithmetic: Theory and applications. Van Nostrand Reinhold.
Kaufmann, A., & Gupta, M. M. (1988). Fuzzy mathematical models in engineering and management science. Amsterdam, The Netherlands: Elsevier.
Kaur, A., & Kumar, A. (2012). A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Applied soft computing, 12(3), 1201-1213.
Liu, B., & Kao, J. (2004). Solving fuzzy transportation problems based on extension principle. European Journal of Operational Research, 153(3), 661–674. https://doi.org/10.1016/S0377-2217(02)00731-2
Moore, R. E., & Yang, C. T. (1959). Interval analysis I. Technical Document LMSD-285875, Lockheed Missiles and Space Division, Sunnyvale, CA, USA.
Pandian, P., & Natarajan, G. (2010). A new algorithm for finding an optimal solution for fuzzy transportation problems. Applied Mathematical Sciences, 4(2), 79–90.
Satakshi, & Henry, V. V. (2024). A novel approach to find simple, pragmatic solutions to transportation problems. International Journal of Mathematics in Operational Research, 27(4), 496-508.
Sharma, D., Bisht, D. C., & Srivastava, P. K. (2024). Solution of fuzzy transportation problem based upon pentagonal and hexagonal fuzzy numbers. International Journal of System Assurance Engineering and Management, 15(9), 4348-4354.
Solaiappan, S., & Jeyaraman, K. (2014). A new optimal solution method for trapezoidal fuzzy transportation problem. International journal of advanced research, 2(1), 933-942.
Wang, Y.-M., & Elhag, T. M. S. (2006). Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems with Applications, 31(2), 309–319. https://doi.org/10.1016/j.eswa.2005.09.040
Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143–161. https://doi.org/10.1016/0020-0255(81)90017-5
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zimmermann, H.-J. (1991). Fuzzy set theory—and its applications (2nd ed.). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-015-7949-7