[1] (a) Rudrapal, M.; De, B., Chemistry and biological importance of heterocyclic Schiff’s bases. International Research Journal of Pure and Applied Chemistry 2013, 232-249.
[2]Kale, M.; Patwardhan, K., Synthesis of heterocyclic scaffolds with anti-hyperlipidemic potential: a review. Der pharma chemica2013,5 (5), 213-222;
[3]Shi, F.; Zeng, X.-N.; Cao, X.-D.; Zhang, S.; Jiang, B.; Zheng, W.-F.; Tu, S.-J., Design and diversity-oriented synthesis of novel 1, 4-thiazepan-3-ones fused with bioactive heterocyclic skeletons and evaluation of their antioxidant and cytotoxic activities. Bioorganic & medicinal chemistry letters 2012,22 (1), 743-746;
[4]Ridley, C. P.; Khosla, C., Synthesis and biological activity of novel pyranopyrones derived from engineered aromatic polyketides. ACS chemical biology 2007,2 (2), 104-108.
[5] O’Hagan, D., Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Natural product reports 2000,17 (5), 435-446.
[6]Natsume, M.; Ogawa, M., Total synthesis of (±)-palustrine and structure revision. Chemical and pharmaceutical bulletin 1984,32 (9), 3789-3791.
[7] Krishna, P. R.; Reddy, P. S., “Diversity Oriented Synthesis” of Functionalized Chiral Tetrahydropyridines: Potential GABA Receptor Agonists and Azasugars from Natural Amino Acids via a Sequential Baylis− Hillman Reaction and RCM Protocol. Journal of combinatorial chemistry 2008,10 (3), 426-435.
[8] Mateeva, N.; Winfield, L.; Redda, K., The chemistry and pharmacology of tetrahydropyridines. Current medicinal chemistry 2005,12 (5), 551-571.
[9] Zhou, Y.; Gregor, V. E.; Ayida, B. K.; Winters, G. C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J. M.; Fish, S., Synthesis and SAR of 3, 5-diamino-piperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside mimetics. Bioorganic & medicinal chemistry letters 2007,17 (5), 1206-1210.
[10] Ho, B.; Crider, A. M.; Stables, J. P., Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores. European journal of medicinal chemistry, 2001, 36(3), 265-286.
[11] Misra, M.; Pandey, S. K.; Pandey, V. P.; Pandey, J.;Tripathi, R.; Tripathi, R. P., Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials. Bioorganic & medicinal chemistry, 2009,17(2), 625-633.
[12] Ito, S.; Satoh, A.; Nagatomi, Y.; Hirata, Y.; Suzuki, G.; Kimura, T.; Kawamoto, H., Discovery and biological profile of 4-(1-aryltriazol-4-yl)-tetrahydropyridines as an orally active new class of metabotropic glutamate receptor 1 antagonist. Bioorganic & medicinal chemistry,2008,16(22), 9817-9829.
[13]Lin, H.; Tan, Y.; Liu, W. J.; Zhang, Z. C.; Sun, X. W.; Lin, G. Q., A highly efficient access to enantiopuretetrahydropyridines: dual-organocatalyst-promoted asymmetric cascade reaction. Chemical Communications,2013, 49(38), 4024-4026.
[14]Fernandez de la Pradilla, R.; Simal, C.; Bates, R. H.; Viso, A.; Infantes, L., Sulfoxide-directed enantioselective synthesis of functionalized tetrahydropyridines. Organic letters 2013,15 (19), 4936-4939.
[15]Guo, H.; Xu, Q.; Kwon, O., Phosphine-promoted [3+ 3] annulations of aziridines with allenoates: Facile entry into highly functionalized tetrahydropyridines. Journal of the American Chemical Society 2009,131 (18), 6318-6319.
[16] Dömling, A., Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical reviews 2006,106 (1), 17-89.
[17]Zhu, J.; Bienaymé, H., Multicomponent reactions. John Wiley & Sons: 2006.
[18] Tempest, P. A., Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction. Current opinion in drug discovery & development 2005,8 (6), 776-788.
19] Choudhury, L. H.; Parvin, T., Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). 2011.
[20]Bharti, R.; Parvin, T., One‐pot Synthesis of Highly Functionalized Tetrahydropyridines: A Camphoresulfonic Acid Catalyzed Multicomponent Reaction. Journal of Heterocyclic Chemistry 2015,52 (6), 1806-1811.
[21] Bharti, R.; Parvin, T., Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Advances 2015,5 (82), 66833-66839.
[22] Bharti, R.; Parvin, T., Molecular diversity from the L-proline-catalyzed, three-component reactions of 4-hydroxycoumarin, aldehyde, and 3-aminopyrazole or 1, 3-dimethyl-6-aminouracil. Synthetic Communications 2015,45 (12), 1442-1450.
[23]Bharti, R.; Parvin, T., Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Molecular diversity 2016,20 (4), 867-876.
[24]Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L. H., Molecular diversity from the three-component reaction of 2-hydroxy-1, 4-naphthaquinone, aldehydes and 6-aminouracils: a reaction condition dependent MCR. RSC Advances 2017,7 (7), 3928-3933.
[25]Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L. H., Recent advances of aminopyrimidines in multicomponent reactions. Current Organic Chemistry 2018,22 (5), 417-445.
[26] Ramachandran, R.; Jayanthi, S.; Jeong, Y. T., One-pot synthesis of highly diversified tetrahydropyridines by tandem condensation of aldehydes, amines, and β-ketoesters. Tetrahedron 2012,68 (1), 363-369.
[27] Goswami, S. V.; Thorat, P. B.; Bhusare, S. R., An efficient one-pot multi-component synthesis of highly functionalized piperidines. 2012.
[28] Wang, H.-J.; Mo, L.-P.; Zhang, Z.-H., Cerium ammonium nitrate-catalyzed multicomponent reaction for efficient synthesis of functionalized tetrahydropyridines. ACS Combinatorial Science 2011,13 (2), 181-185.
[29] Clarke, P. A.; Zaytzev, A. V.; Whitwood, A. C., Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: a five-component condensation. Tetrahedron letters 2007,48 (30), 5209-5212.
[30] Khan, A. T.; Lal, M.; Khan, M. M., Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammoniumtribromide (TBATB). Tetrahedron letters 2010,51 (33), 4419-4424.
[31] Khan, A. T.; Khan, M. M.; Bannuru, K. K., Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron 2010,66 (39), 7762-7772.
[32] Umamahesh, B.; Sathesh, V.; Ramachandran, G.; Sathishkumar, M.; Sathiyanarayanan, K., LaCl 3 Ě7H 2 O as an Efficient Catalyst for One-Pot Synthesis of Highly Functionalized Piperidines via Multi-component Organic Reactions. Catalysis letters 2012,142 (7), 895-900.
[33] Mishra, S.; Ghosh, R., Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2· 8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron letters 2011,52 (22), 2857-2861.
[34] Khan, A. T.; Parvin, T.; Choudhury, L. H., Effects of substituents in the β-position of 1, 3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines. The Journal of organic chemistry 2008,73 (21), 8398-8402.
[35] http://youtu.be/FMtayyizdFiw.
[36] Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine 1999,26 (9-10), 1231-1237.
[37] Bursal, E.; Gülçin, İ., Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidiadeliciosa). Food Research International 2011,44 (5), 1482-1489.