Skip to main content


Journal Issues

Natural Acid Catalyzed Aqua Mediated multi component Synthesis of Tetrahydropyridines and its antioxidant Activities
Renu Sharma
Pages: 1-27 | First Published: 05 Apr 2022
Full text | Abstract | Purchase | References | Request permissions

Abstract
Tetra hydropyridine derivatives are one of the most demanding molecules due to its great applications in medicinal and synthetic chemistry. Here we have designed a new way to synthesize a series of tetrahydropyridine derivatives using natural acid. In this methodology, five-component reaction of 1,3-diketones, substituted amines and aldehydes is done in the presence of citric acid extracted from lemon juice. High atom economy, green and mild conditions, high to moderate yields and shorter reaction times were the key features of this methodology. Later, we have discussed the antioxidant activities of our compounds. It is predicted that compound 2, 5, 11 and 12 were quite effective to show good antioxidant activity. 

Keywords: amines and aldehydes is done in the presence of citric acid extracted from lemon juice

[1] (a) Rudrapal, M.; De, B., Chemistry and biological importance of heterocyclic Schiff’s bases. International Research Journal of Pure and Applied Chemistry 2013, 232-249.
[2]Kale, M.; Patwardhan, K., Synthesis of heterocyclic scaffolds with anti-hyperlipidemic potential: a review. Der pharma chemica2013,5 (5), 213-222;
[3]Shi, F.; Zeng, X.-N.; Cao, X.-D.; Zhang, S.; Jiang, B.; Zheng, W.-F.; Tu, S.-J., Design and diversity-oriented synthesis of novel 1, 4-thiazepan-3-ones fused with bioactive heterocyclic skeletons and evaluation of their antioxidant and cytotoxic activities. Bioorganic & medicinal chemistry letters 2012,22 (1), 743-746;
[4]Ridley, C. P.; Khosla, C., Synthesis and biological activity of novel pyranopyrones derived from engineered aromatic polyketides. ACS chemical biology 2007,2 (2), 104-108.
[5] O’Hagan, D., Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Natural product reports 2000,17 (5), 435-446.

[6]Natsume, M.; Ogawa, M., Total synthesis of (±)-palustrine and structure revision. Chemical and pharmaceutical bulletin 1984,32 (9), 3789-3791.
[7] Krishna, P. R.; Reddy, P. S., “Diversity Oriented Synthesis” of Functionalized Chiral Tetrahydropyridines: Potential GABA Receptor Agonists and Azasugars from Natural Amino Acids via a Sequential Baylis− Hillman Reaction and RCM Protocol. Journal of combinatorial chemistry 2008,10 (3), 426-435.
[8] Mateeva, N.; Winfield, L.; Redda, K., The chemistry and pharmacology of tetrahydropyridines. Current medicinal chemistry 2005,12 (5), 551-571.
[9] Zhou, Y.; Gregor, V. E.; Ayida, B. K.; Winters, G. C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J. M.; Fish, S., Synthesis and SAR of 3, 5-diamino-piperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside mimetics. Bioorganic & medicinal chemistry letters 2007,17 (5), 1206-1210.
[10] Ho, B.; Crider, A. M.; Stables, J. P., Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores. European journal of medicinal chemistry, 2001, 36(3), 265-286.
[11] Misra, M.; Pandey, S. K.; Pandey, V. P.; Pandey, J.;Tripathi, R.; Tripathi, R. P., Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials. Bioorganic & medicinal chemistry, 2009,17(2), 625-633.
[12] Ito, S.; Satoh, A.; Nagatomi, Y.; Hirata, Y.; Suzuki, G.; Kimura, T.; Kawamoto, H., Discovery and biological profile of 4-(1-aryltriazol-4-yl)-tetrahydropyridines as an orally active new class of metabotropic glutamate receptor 1 antagonist. Bioorganic & medicinal chemistry,2008,16(22), 9817-9829.
[13]Lin, H.; Tan, Y.; Liu, W. J.; Zhang, Z. C.; Sun, X. W.; Lin, G. Q., A highly efficient access to enantiopuretetrahydropyridines: dual-organocatalyst-promoted asymmetric cascade reaction. Chemical Communications,2013, 49(38), 4024-4026.
[14]Fernandez de la Pradilla, R.; Simal, C.; Bates, R. H.; Viso, A.; Infantes, L., Sulfoxide-directed enantioselective synthesis of functionalized tetrahydropyridines. Organic letters 2013,15 (19), 4936-4939.
[15]Guo, H.; Xu, Q.; Kwon, O., Phosphine-promoted [3+ 3] annulations of aziridines with allenoates: Facile entry into highly functionalized tetrahydropyridines. Journal of the American Chemical Society 2009,131 (18), 6318-6319.
[16] Dömling, A., Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical reviews 2006,106 (1), 17-89.
[17]Zhu, J.; Bienaymé, H., Multicomponent reactions. John Wiley & Sons: 2006.
[18] Tempest, P. A., Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction. Current opinion in drug discovery & development 2005,8 (6), 776-788.

19] Choudhury, L. H.; Parvin, T., Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). 2011.
[20]Bharti, R.; Parvin, T., One‐pot Synthesis of Highly Functionalized Tetrahydropyridines: A Camphoresulfonic Acid Catalyzed Multicomponent Reaction. Journal of Heterocyclic Chemistry 2015,52 (6), 1806-1811.
[21] Bharti, R.; Parvin, T., Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Advances 2015,5 (82), 66833-66839.
[22] Bharti, R.; Parvin, T., Molecular diversity from the L-proline-catalyzed, three-component reactions of 4-hydroxycoumarin, aldehyde, and 3-aminopyrazole or 1, 3-dimethyl-6-aminouracil. Synthetic Communications 2015,45 (12), 1442-1450.
[23]Bharti, R.; Parvin, T., Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Molecular diversity 2016,20 (4), 867-876.
[24]Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L. H., Molecular diversity from the three-component reaction of 2-hydroxy-1, 4-naphthaquinone, aldehydes and 6-aminouracils: a reaction condition dependent MCR. RSC Advances 2017,7 (7), 3928-3933.
[25]Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L. H., Recent advances of aminopyrimidines in multicomponent reactions. Current Organic Chemistry 2018,22 (5), 417-445.
[26] Ramachandran, R.; Jayanthi, S.; Jeong, Y. T., One-pot synthesis of highly diversified tetrahydropyridines by tandem condensation of aldehydes, amines, and β-ketoesters. Tetrahedron 2012,68 (1), 363-369.
[27] Goswami, S. V.; Thorat, P. B.; Bhusare, S. R., An efficient one-pot multi-component synthesis of highly functionalized piperidines. 2012.
[28] Wang, H.-J.; Mo, L.-P.; Zhang, Z.-H., Cerium ammonium nitrate-catalyzed multicomponent reaction for efficient synthesis of functionalized tetrahydropyridines. ACS Combinatorial Science 2011,13 (2), 181-185.
[29] Clarke, P. A.; Zaytzev, A. V.; Whitwood, A. C., Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: a five-component condensation. Tetrahedron letters 2007,48 (30), 5209-5212.
[30] Khan, A. T.; Lal, M.; Khan, M. M., Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammoniumtribromide (TBATB). Tetrahedron letters 2010,51 (33), 4419-4424.
[31] Khan, A. T.; Khan, M. M.; Bannuru, K. K., Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines. Tetrahedron 2010,66 (39), 7762-7772.

[32] Umamahesh, B.; Sathesh, V.; Ramachandran, G.; Sathishkumar, M.; Sathiyanarayanan, K., LaCl 3 Ě7H 2 O as an Efficient Catalyst for One-Pot Synthesis of Highly Functionalized Piperidines via Multi-component Organic Reactions. Catalysis letters 2012,142 (7), 895-900.
[33] Mishra, S.; Ghosh, R., Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2· 8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron letters 2011,52 (22), 2857-2861.
[34] Khan, A. T.; Parvin, T.; Choudhury, L. H., Effects of substituents in the β-position of 1, 3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines. The Journal of organic chemistry 2008,73 (21), 8398-8402.
[35] http://youtu.be/FMtayyizdFiw.
[36] Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine 1999,26 (9-10), 1231-1237.
[37] Bursal, E.; Gülçin, İ., Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidiadeliciosa). Food Research International 2011,44 (5), 1482-1489.