Skip to main content


Molecular Structure, Vibrational Spectra and First Order Hyperpolarizability and DFT Approach OF4-(2, 5-Di-2-Thienyl-1h-Pyrrol-1-Yl) Benzoic Acid

Issue Abstract

Abstract
A structural and vibrational analysis of the 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid (TPBA), was carried out by ab initio calculations, at the density functional theory (DFT) method. Molecular geometry, vibrational wave numbers and gauge including atomic orbital (GIAO) 13C NMR and 1H NMR chemical shift values of (TPBA), in the ground state have been calculated by using ab initio density functional theory (DFT/B3LYP) method with 6-311G(d,p) as basis set for the first time. Comparison of the observed fundamental vibrational modes of (TPBA) and calculated results by DFT/B3LYP method indicates that B3LYP level of theory giving yield good results for quantum chemical studies. Vibrational wave numbers obtained by the DFT/B3LYP method are in good agreement with the experimental data. The study was complemented with a natural bond orbital (NBO) analysis, to evaluate the significance of hyper conjugative interactions and electrostatic effects on such molecular structure. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The predicted non-linear optical properties of the title compound are much greater than ones of urea. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals analysis and thermodynamic properties of TPBA were investigated using theoretical calculations.


Author Information
Dr. A. Manohara
Issue No
4
Volume No
5
Issue Publish Date
05 Apr 2019
Issue Pages
56-75

Issue References

1. J. Jusélius, D. Sundholm, Phys. Chem. Chem. Phys. 2 (10) (2000) 2145–2151.
2. Yung Hyun Kim, Jaeyoung Hwang, Jung Ik Son, Yoon-Bo Shim, 160 (2010) 413–418.
3. Hakan Can Soyleyici, Metin Ak, Yüksel Şahin, Dilek Odacı Demikol, Suna Timur, Chemistry and Physics 142 (2013) 303-310.
4. Amitesh Maiti, Alexei Svizhenko, M.P. Anantram, Phys. Rev. Lett. 88 (2002) 1268051.
5. Danhong Zhou, Ding Ma, Yan Wang, Xianchun Liu, Xinhe Bao, Chem. Phys. Lett. 373 (2003) 46-51.
6. J. Leconte, A. Markovits, M.K. Skalli, C. Minot, A. Belmajdoub, Surf. Sci. 497 (2002) 194-204.
7. Jian-guo Wang, Chang-jun Liu, Zhiping Fang, Yue Liu, Zhongqi Han, J. Phys. Chem. B 108 (2004) 1653-1659.
8. Gaussian 03W, Gaussian Inc.: Wallingford, 2004.
9. H.B. Schlegel, J. Comput. Chem. 3 (1982) 214-218.
10. M.H. Jamroz, Vibrational Enegy Distribution Analysis, VEDA 4 Computer Program, Poland, 2004.
11. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.
12. R. Ditchfield, J. Chem. Phys. 56 (1972) 5688-5691.
13. K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251-8260.
14. D. Michalska, R. Wysokinski Chem. Phys. Lett. 403 (2005) 211-217.
15. S. Shen, G.A. Guirgis, J.R. Durig, Struct. Chem. 12 (2001) 33-43.
16. A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual, Gaussian Inc, Pittsburgh, PA, 2000.
17. Li Xiao-Hong, Liu Xiang-Ru, Zhang Xian-Zhou, Comp. Theo. Chem. 969 (2011) 27–34
18. A. Dolmella, S. Gatto, E. Girardi, G. Bandoli, J. Mol. Struct. 513 (1999) 177-199.
19. S. Kikionis, V. Mckee, J. Markopoulos, O. Igglessi-Markopoulou, Tetrahedron 64 (2008) 5454-5458.
20. O.R. Pons, L.S. Andrés, D. Burget, P. Jacques, J. Photochem. Photobiol. A Chem. 179 (2006) 298–304.
21. H.S. Chen, Z.M. Li, X.P. Yang, H.G. Wang, X.K. Yao, Chin. Struct. J. Chem. 19 (2000) 317–325.
22. J.J. Nie, D.J. Xu, Chin. Struct. J. Chem. 21 (2002) 165–167.
23. J. Coates, in: R.A. Meyers (Ed.), Interpretation of Infrared Spectra: A Practical Approach, John Wiley and Sons Ltd., Chichester, 2000.
24. J.S. Kwiatkowski, J. Leszczynski, I. Teca, J. Mol. Struct. 436-437 (1997) 451-480.25. B. Bak, D. Christensen, L. Hansen-Nygaard, J. Rastrup-Andersen, J. Mol. Spectrosc. 7 (1961) 58-63.
26. T. Kupka, R. Wrzalik, G. Pasterna, K. Pasterny, J. Mol. Struct. 616 (2002) 17–32.
27. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, New York, 1969.
28. A. Fu, D. Du, Z. Zhou, Spectrochim. Acta 59 (2003) 245–253.
29. R. Ditchfield, Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility, 56 (1972) 5688-5691.
30. H.O. Kalinowski, S. Brawn, Carbon13 NMR Spectroscopy, John Wiley and Sons, Chichester, 1988.
31. K. Pinlajer, E. Kleinpeter (Eds.) carbon13 chemical shifts in structure and Spectrochemical analysis VCH publishers, Deerfield Beach, 1994.
32. M. Sarafran, A. Komasa, E.B. Adamska, J. Mol. Struc. (Theochem.) 827 (2007) 101.
33. H.W. Thomson, P. Torkington, J. Chem. Soc. 171 (1945) 640-645.
34. E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001.
35. C. James, A. AmalRaj, R. Reghunathan, I.H. Joe, V.S. JayaKumar, J. Raman
Spectrosc. 37 (2007) 1381-1392.
36. L.J. Na, C.Z. Rang, Y.S. Fang, J. Zhejiang Univ. Sci. 6B (2005) 584-589.
37. R.G. Pearson, J. Org. Chem. 54 (1989) 1423-1430.
38. J.I. Aihara, Phys. Chem. Chem. Phys. 2 (2000) 3121-3125.
39. X. Liu, T.G. Schmalz, D.J. Klein, Chem. Phys. Lett. 188 (1992) 550-554.
40. M.D. Diener, J.M. Alford, Nature (London) 393 (1998) 668-671.
41. R.G. Pearson, Proc. Natl. Acad. Sci. USA 83 (1986) 8440-8441.
42. R.G. Pearson, J. Am. Chem. Soc. 110 (1988) 2092-2097.
43. E. Scrocco, J. Tomasi, Adv. Quant. Chem. (1979) 11–115.