Abstract
In recent years, online social media has grown in popularity, and a vast volume of information has circulated over social media platforms, altering people's access to information. The credibility of information material is being questioned, and various types of misinformation are using social media to propagate quickly. The importance of network space administration and maintaining a trusted network environment cannot be overstated. In this paper, we look at a new challenge termed the activity minimization of misinformation influence (AMMI) problem, which involves removing a group of nodes from the network in order to reduce the total amount of misinformation interaction between nodes (TAMIN). To put it another way, the AMMI challenge is to choose K nodes from a given social network G to block in order to minimize the TAMIN.We demonstrate that the objective function is neither submodular nor supermodular, and we suggest a heuristic greedy algorithm (HGA) for removing the top K nodes.
Keywords: Comment Filtering, Common Interests,misinformation blocking,social network.
References
1. E. Morozov, “Swine flu: Twitter’s power to misinform,” Foreign Policy,2009.
2. R. Yan, Y. Li, W. Wu, D. Li, and Y. Wang, “Rumor blocking throughonline link deletion on social networks,” ACM Trans. Knowl. Discoveryfrom Data, vol. 13, no. 2, pp. 1–26, Jun. 2019.
3. L. Fan, Z. Lu, W. Wu, B. Thuraisingham, H. Ma, and Y. Bi, “Leastcost rumor blocking in social networks,” presented at the IEEE 33rd Int. Conf. Distrib. Comput. Syst., Jul. 2013
4. L. Wu, F. Morstatter, X. Hu, and H. Liu, Big Data in Complex and SocialNetworks. Boca Raton, FL, USA: CRC Press, 2016, pp. 125–152.
5. H. Zhang, H. Zhang, X. Li, and M. T. Thai, “Limiting the spread ofmisinformationwhile effectively raising awareness in social networks,”in Computational Social Networks. Cham, Switzerland: Springer, 2015,pp. 35–47.
6. D. Ferraioli, D. Ferraioli, D. Ferraioli, and D. Ferraioli, “Contrastingthe spread of misinformation in online social networks,” in Proc. Conf.Auton. Agents Multiagent Syst., 2017, pp. 1323–1331.
7. Senthil kumar, V., Prasanth, K. Weighted Rendezvous Planning on Q-Learning Based Adaptive Zone Partition with PSO Based Optimal Path Selection. Wireless Personal Communications 110, 153–167 (2020). https://doi-org.libproxy.viko.lt /10.1007/s11277-019-06717-z.
8. T. Chen, W. Liu, Q. Fang, J. Guo, and D.-Z. Du, “Minimizing misinformation profit in social networks,” IEEE Trans. Comput. Social Syst.,vol. 6, no. 6, pp. 1206–1218, Dec. 2019.
9. J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and thedynamics of the news cycle,” in Proc. 15th ACM SIGKDD Int. Conf.Knowl. Discovery Data Mining, 2009, pp. 497–506.
10. Jaganathan, M., Sabari, A. An heuristic cloud based segmentation technique using edge and texture based two dimensional entropy. Cluster Computing Vol 22, PP 12767–12776(2019).
https://doi.org/10.1007/s10586-018-1757-3
11. H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev.,vol. 42, no. 4, pp. 599–653, 2000.
12. J. Medlock and A. P. Galvani, “Optimizing influenza vaccine distribution,” Science, vol. 325, no. 5948, pp. 1705–1708, Sep. 2009.
13. K. Kawachi, M. Seki, H. Yoshida, Y. Otake, K. Warashina, and H. Ueda,“A rumor transmission model with various contact interactions,” J.Theor. Biol., vol. 253, no. 1, pp. 55–60, Jul. 2008.
14. P. Basaras, D. Katsaros, and L. Tassiulas, “Dynamically blockingcontagions in complex networks by cutting vital connections,” in Proc.IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 1170–1175.
15. W. Li et al., “The rumor diffusion process with emerging independentspreaders in complex networks,” Phys. A, Stat. Mech. Appl., vol. 397,pp. 121–128, Mar. 2014.
16. Z. He, Z. Cai, J. Yu, X. Wang, Y. Sun, and Y. Li, “Cost-efficientstrategies for restraining rumor spreading in mobile social networks,”IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2789–2800, Mar. 2017.
17. F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan, “Epidemiological modeling of news and rumors on Twitter,” in Proc. 7th WorkshopSocial Netw. Mining Anal. SNAKDD, 2013, pp. 1–9.
18. X. Wang, Y. Lin, Y. Zhao, L. Zhang, J. Liang, and Z. Cai, “Anovel approach for inhibiting misinformation propagation in humanmobile opportunistic networks,” Peer-to-Peer Netw. Appl., vol. 10, no. 2,pp. 377–394, Mar. 2017.
19. S. Wang, X. Zhao, Y. Chen, Z. Li, K. Zhang, and J. Xia, “Negativeinfluence minimizing by blocking nodes in social networks,” in Proc.Workshops 27th AAAI Conf. Artif. Intell., 2013, pp. 134–136.
20. M. Kimura, K. Saito, and H. Motoda, “Minimizing the spread of contamination by blocking links in a network,” presented at the Proc. 23rdNat. Conf.Artif. Intell, vol. 2, Chicago, IL, USA, 2008, pp. 1175–1180.
21. C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread ofmisinformation in social networks,” in Proc. 20th Int. Conf. World WideWeb WWW, 2011, pp. 665–674.
22. Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedyalgorithm for mining top-K influential nodes in mobile social networks,”presented at the Proc. 16th ACM SIGKDD Int. Conf. Knowl. DiscoveryData Mining, Washington, DC, USA, Jul. 2010.
23. X. He, G. Song, W. Chen, and Q. Jiang, “Influence blocking maximization in social networks under the competitive linear threshold model,”in Proc. SIAM Int. Conf. Data Mining. Philadelphia, PA, USA: SIAM,2012, pp. 463–474.
24. N. P. Nguyen, G. Yan, M. T. Thai, and S. Eidenbenz, “Containment ofmisinformation spread in online social networks,” in Proc. 3rd Annu.ACM Web Sci. Conf. WebSci, 2012, pp. 213–222.
25. P. Domingos and M. Richardson, “Mining the network value of customers,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery DataMining KDD, 2001, pp. 57–66.
26. D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread ofinfluence through a social network,” in Proc. 9th ACM SIGKDD Int.Conf. Knowl. Discovery Data Mining KDD, 2003, pp. 137–146.
27. D. Kempe, J. Kleinberg, and É. Tardos, “Influential nodes in a diffusionmodel for social networks,” in Automata, Languages and Programming.Berlin, Germany: Springer, 2005, pp. 1127–1138.
28. M. Kimura and K. Saito, “Tractable models for information diffusion insocial networks,” in Knowledge Discovery in Databases, PKDD. Berlin,Germany: Springer, 2006, pp. 259–271.
29. N. R. Suri and Y. Narahari, “Determining the top-k nodes in socialnetworks using the Shapley value,” presented at the Proc. the 7th Int.Joint Conf. Auton. Agents Multiagent Syst., vol. 3, Estoril, Portugal,May 2008.
30. R. Yan, D. Li, W. Wu, D.-Z. Du, and Y. Wang, “Minimizing influenceofrumors by blockers on social networks: Algorithms and analysis,”IEEE Trans. Netw. Sci. Eng., early access, Mar. 6, 2019, doi: 10.1109/TNSE.2019.2903272.
31. C. J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and S. S. Ravi,“Blocking simple and complex contagion by edge removal,” in Proc.IEEE 13th Int. Conf. Data Mining, Dec. 2013, pp. 399–408.
32. H. Kaur, M. Talluri, and J. S. He, “Blocking negative influential nodeset in social networks: From host perspective,” in Proc. Int. Conf.Collaboration Technol. Syst. (CTS), Jun. 2015, pp. 472–473.
33. G. Tong, W. Wu, and D.-Z. Du, “Distributed rumor blocking withmultiple positive cascades,” IEEE Trans. Comput. Social Syst., vol. 5,no. 2, pp. 468–480, Jun. 2018.
34. B. Wang, G. Chen, L. Fu, L. Song, and X. Wang, “DRIMUX: Dynamicrumor influence minimization with user experience in social networks,”IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2168–2181,Oct. 2017.
35. Dr. V. Senthil kumar, Mr. P. Jeevanantham, Dr. A. Viswanathan, Dr. Vignesh Janarthanan, Dr. M. Umamaheswari, Dr. S. Sivaprakash Emperor Journal of Applied Scientific Research “Improve Design and Analysis of Friend-to-Friend Content Dissemination System ”Volume - 3 Issue - 3 2021
36. Vignesh Janarthanan, A.Viswanathan, M. Umamaheswari, “Neural Network and Cuckoo Optimization Algorithm for Remote Sensing Image Classification ", International Journal of Recent Technology and Engineering., vol. 8, no. 4, pp. 1630-1634, Jun. 2019.