Skip to main content


FDA Recommended Potent Drugs against Covid-19: Insight through Molecular Docking

Issue Abstract

Abstract
Human Coronavirus (COVID-19) is a worldwide pandemic of 2019-20 that was emerged in China in December, 2019. More than 37,000deaths with7, 84, 440confirmed cases has been reported from around 200 different countries has been reported till now and the number is increasing every second. The spread is said to be throughhuman to human transmission via close contact or respiratory droplets produced when people cough or sneeze. No treatment for the illness has been approved yet. The urgent need is to find solution to this growing problem that has affected the whole mankind. World Health Organisation (WHO) as well as US Food and Drug Administration (FDA) arecontinuously working to find the solution. In the same line they have proposed many potent drugs that may have efficiency against the newly emerged viral infection. To supportthe efforts the present study is designed to carry out the in silicoanalysis viz. Docking studiesof around 16drugs recently recommended by US FDA by observing the interaction of test molecules with SARS proteinase.
Keywords: COVID-19,Coronavirus, Docking studies, Auto-Dock, SARS proteinase inhibition, FDA, Potent Drugs


Author Information
Pomila
Issue No
9
Volume No
1
Issue Publish Date
05 Sep 2022
Issue Pages
1-21

Issue References

1. I.I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M.U.G. Kraemer, K. Khan,Pneumonia of unknown etiology in Wuhan, China: Potential for internationalspread via commercial air travel, Journal of Travel Medicine (2020).
2. D.S. Hui, I.E. Azhar, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing2019-nCoV epidemic threat of novel coronaviruses to global health—the latest2019 novel coronavirus outbreak in Wuhan, China, International Journal ofInfectious Diseases 91 (2020) 264–266.
3. https://edition.cnn.com/interactive/2020/health/coronavirus-maps-and-cases/
4. A.O. Adedeji, S.G. Sarafianos, Antiviral drugs specific for coronavirusesin preclinical development. Current Opinionin Virology8 (2014) 45–53. doi:10.1016/j.coviro.2014.06.002.
5. P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, et al. Characterization of a novel coronavirus associated with severeacute respiratory syndrome. Science. 300 (2003) 1394–9. doi:10.1126/science.1085952.
6. A. Berger, C.Drosten, H.W. Doerr, M. Sturmer, W. Preiser, Severe acute respiratorysyndrome (SARS)–paradigm of an emerging viral infection. Journal ofClinical Virology29(1) (2004) 13–22.
7. W. Liang, M.L. McLaws, M. Liu, J. Mi, D.K. Chan, Hindsight: a re-analysisof the severe acute respiratory syndrome outbreak in Beijing. PublicHealth. 121(10) (2007) 725–33. doi: 10.1016/j.puhe.2007.02.023.
8. S. Shigeta, T. Yamase, Current status of anti-SARS agents. AntiviralChemistry & Chemotherapy16(1) (2005) 23–31. doi: 10.1177/095632020501600103.
9. P.K. Cheng, D.A. Wong, L.K. Tong, S.M. Ip, A.C. Lo, C.S. Lau, et al. Viralshedding patterns of coronavirus in patients with probable severeacute respiratory syndrome. Lancet. 363(9422) (2004) 1699–700. doi:10.1016/S0140-6736(04)16255-7.
10. H.A. Dwosh, H.H. Hong, D. Austgarden, S. Herman, R. Schabas, Identificationnd containment of an outbreak of SARS in a community hospital.Can Med Assoc J. 168(11): (2003) 1415–20.
11. Zhang XW, Yap YL. Exploring the binding mechanism of the mainproteinase in SARS-associated coronavirus and its implication toanti-SARS drug design. Bioorg Med Chem. 2004;12(9):2219–23. doi:10.1016/j.bmc.2004.02.015.
12. Groneberg DA, Hilgenfeld R, Zabel P. Molecular mechanisms of severeacute respiratory syndrome (SARS). Respir Res. 2005;6:8. doi:10.1186/1465-9921-6-8.
13. Lin PY, Chou CY, Chang HC, Hsu WC, Chang GG. Correlation betweendissociation and catalysis of SARS-CoV main protease. Arch BiochemBiophys. 2008;472(1):34–42. doi: 10.1016/j.abb.2008.01.023.
14. Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha SA, Chase P, etl. Discovery, synthesis, and structure-based optimization of a seriesof N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188)as potent noncovalent small molecule inhibitors of the severe acuterespiratory syndrome coronavirus (SARS-CoV) 3CL protease. J MedChem. 2013;56(2):534–46. doi: 10.1021/jm301580n.
15. www.who.int
16. M.R. Dayer, S. Taleb-Gassabi, M.S. Dayer, Lopinavir; A Potent Drug against Coronavirus Infection: Insight fromMolecular Docking Study. Arch Clin Infect Dis. 12(4) (2017) 1-7.
17. (http://www.rcsb.org/pdb)

18. S.M.D. Rizvi,S. Shakil, M. Haneef, A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. Excil journal12(2013) 831–857.PMCID: PMC4669947.
19. O. Trott, A. J. Olson, AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461. DOI 10.1002/jcc.21334
20. Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 1998;7:1884–1897. doi: 10.1002/pro.5560070905.
21. Y.W. Tan, M.J.Y. YanAng, Q.Y. Lau, A. Poulsen, F. M. Ng, S.W. Then, J. Peng, J. Hill, W.J. Hong, C.S. BrianChia, J.J.H. Chu, Antiviral activities of peptide based covalent inhibitors of the Enterovirus 71 3C protease. Scientific Reports 6 (2016) 1-8. DOI: 10.1038/srep33663.