Skip to main content


Combustion Method for Synthesis of Nanoparticles

Issue Abstract

Abstract
Combustion synthesis has emerged as promising route for synthesis of variety of oxide, metals, alloys and sulphide nanoparticles in nanocrystalline form. The starting materials for this process are precursor and fuel. A stoichiometric amount of precursor and fuel is usually mixed to generate self-propagating exothermic reaction which allows the formation of finer nanoparticles. This technique can also help in controlling size of nanoparticles, composition, structure, and morphology of synthesized nanoparticles by adjusting the choice of precursor arterial and type of fuel. This technique results in formation of nanoparticles which are used for different applicationsin the different areas. More precisely, an application of synthesis involves various opto-electronic devices, to store energy, andbiological, and magnetic applications.
Keyword: Combustion, precursors, fuel, solution combustion, nanoparticle, synthesis.


Author Information
Karanpreet Virk
Issue No
12
Volume No
2
Issue Publish Date
05 Dec 2022
Issue Pages
1-9

Issue References

1. Feynman R. P., Handbook of Nanoscience, Engineering and Technology-Third edition, pp 26-35, 2012, (CRC press).
2. Takei K., Fang H., Kumar S. B., Kapadia R., Gao Q., Madsen M., Kim H. S., Liu C.-H., Chueh Y.-L., Lpis E., Krishna S., Bechtel H. A., Gou J., and Javey A., Nano Lett. 11, 5008 (2011).
3. Yang F., Liu Y., Martha S. K., Wu Z., Andrews J. C., Ice G. E., Pianetta P., and Nanda J., Nano Lett. 14, 4334 (2014).
4. Kose H., Karaal S., Aydin A. O., and Akbulut H., Materials Science in Semiconductor Processing 38, 404 (2015).
5. Huang H., Ng M., Kong L., Materials and Design 88, 384 (2015).
6. Malik R., Tomer V. K., Rana P. S., Nehra S. P., and Duhan S., Materials Letters 154, 124 (2015).
7. Norek M., Putkonen M., Zaleszczyk W., Budner B., and Bojar Z., Materials Characterization 136, 52 (2018).
8. Wang L. P. and Hong G. Y., Materials Research Bulletin 35, 695 (2000).
9. Yu X., Zhou C., He X., Pang Z., and Yang S.-P., Materials Letters 58, 1087 (2004).
10. Manju, Jain M., Kumar R., Kumar S., Thakur A, and Vij A., AIP Conference Procedings 1953, 060013 (2018).
11. Jain M., Manju, Singh K., Kumar A., Sharma J., Chae K. H., Vij A., and Thakur A., AIP Conference Proceedings 1953, 030068 (2018).
12. Kumar V., Singh K., Jain M., Manju, Kumar A., Sharma J., Vij A., and Thakur A., Applied Surface Science 444, 552 (2018).
13. Varma A., Mukasyan A. S., Rogachev A. S., and Manukyan K. V., Chemical Reviews 116, 14493 (2016).
14. Tyagi A. K., BARC Newsletter (2006).
15. Jain S. R., Adiga K. C., and Verneker V. R. P., Combustion and flame 40, 71 (1981).