Skip to main content


Chemical Sustainability Issues in Manufacturing of 3d Printed Parts:A State of Art Review A State of Art Review

Issue Abstract

Abstract
3D printers are revolutionizing the manufacturing domain as production of high precision, defect less and functional prototypes which fit over mechanical, morphological, tribological, chemical and thermal aspects.3D manufactured parts are highly appreciable for formation of composite material for use in different engineering applications. A number of studies have been reported by researchers in 3D printing field for better sustainability of the 3D manufactured parts by addition/reinforcement of the metallic/nonmetallic particles. The sustainability in terms of mechanical, morphological, tribological, chemical and thermal aspect ishighly affected by the material issues, machining parameters and manufacturing environment. The present study reviewed the applicability of the 3D printing technology for better sustainability of 3D printed parts over material, fabrication and processing issues.
Keywords: 3 D printing, Sustainability aspects, Chemical Sustainability


Author Information
Ranvijay Kumar
Issue No
2
Volume No
1
Issue Publish Date
05 Feb 2022
Issue Pages
1-10

Issue References

1. Qin, J., Liu, Y., Grosvenor, R., 2017. A Framework of Energy Consumption Modelling for Additive Manufacturing Using Internet of Things. Procedia CIRP 63, 307–312. https://doi.org/10.1016/j.procir.2017.02.036
2. Rejeski, D., Zhao, F., Huang, Y., 2018. Research needs and recommendations on environmental implications of additive manufacturing, Additive Manufacturing. Elsevier B.V. https://doi.org/10.1016/j.addma.2017.10.019
3. Coon, C., Pretzel, B., Lomax, T., Strlič, M., 2016. Preserving rapid prototypes: A review. Herit. Sci. 4, 1–16. https://doi.org/10.1186/s40494-016-0097-y
4. Mellor, S., Hao, L., Zhang, D., 2014. Additive manufacturing: A framework for implementation. Int. J. Prod. Econ. 149, 194–201. https://doi.org/10.1016/j.ijpe.2013.07.008
5. Lušić, M., Barabanov, A., Morina, D., Feuerstein, F., Hornfeck, R., 2015. Towards zero waste in additive manufacturing: A case study investigating one pressurised rapid tooling mould to ensure resource efficiency. Procedia CIRP 37, 54–58. https://doi.org/10.1016/j.procir.2015.08.022
6. Sendel, F., Allison-Hope, D., Morris, J., 2015. 3D Printing Sustainability Opportunities and Challenges. Bsr.
7. Statement, T., 1980. Appendix I-23 : Trend Analysis – 3D Printing and Production 2018–2020.
8. Singh, R., Kumar, R., Kumar, S., 2017. Polymer Waste as Fused Deposition Modeling Feed Stock Filament for Industrial Applications. Ref. Modul. Mater. Sci. Mater. Eng. 1–12. https://doi.org/10.1016/B978-0-12-803581-8.04153-9
9. Singh, S., Singh, R., 2016. Experimental investigations for use of nylon6 industrial waste as FDM feedstock filament for investment casting applications. Indian J. Eng. Mater. Sci. 23, 181–187.
10. Kumar, S., Czekanski, A., 2017. Development of filaments using selective laser sintering waste powder. J. Clean. Prod. 165, 1188–1196. https://doi.org/10.1016/j.jclepro.2017.07.202
11. Parandoush, P., Lin, D., 2017. A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 182, 36–53. https://doi.org/10.1016/j.compstruct.2017.08.088
12. Yang, Y., Li, L., 2018. Total volatile organic compound emission evaluation and control for stereolithography additive manufacturing process. J. Clean. Prod. 170, 1268–1278. https://doi.org/10.1016/j.jclepro.2017.09.193
13. Melchels, F.P.W., Domingos, M.A.N., Klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W., 2012. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104. https://doi.org/10.1016/j.progpolymsci.2011.11.007
14. Franco, A., Lanzetta, M., Romoli, L., 2010. Experimental analysis of selective laser sintering of polyamide powders: An energy perspective. J. Clean. Prod. 18, 1722–1730. https://doi.org/10.1016/j.jclepro.2010.07.018
15. Campanelli, S.L., Contuzzi, N., Angelastro, A., Ludovico, A.D., 2010. Capabilities and Performances of the Selective Laser Melting Process. New Trends Technol. Devices, Comput. Commun. Ind. Syst. Chapter 13. https://doi.org/10.5772/10432
16. Murr, L.E., 2015. Metallurgy of additive manufacturing: Examples from electron beam melting. Addit. Manuf. 5, 40–53. https://doi.org/10.1016/j.addma.2014.12.002
17. Almanza, E., Pérez, M.J., Rodríguez, N.A., Murr, L.E., 2017. Corrosion resistance ofTi-6Al-4V and ASTM F75 alloys processed by electron beam melting. J. Mater. Res. Technol. 6, 251–257. https://doi.org/10.1016/j.jmrt.2017.05.003
18. Liao, G., Li, Z., Cheng, Y., Xu, D., Zhu, D., Jiang, S., Guo, J., Chen, X., Xu, G., Zhu, Y., 2018. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater. Des. 139, 283–292. https://doi.org/10.1016/j.matdes.2017.11.027
19. Sridharan, A.K., Joshi, S., 2001. An octree-based algorithm for the optimization of extraneous material removal in laminated object manufacturing (LOM). J. Manuf. Syst. 19, 355–364. https://doi.org/10.1016/S0278-6125(01)80007-8
20. Gonalves, J., Dos Santos, J.F., Canto, L.B., Amancio-Filho, S.T., 2015. Friction spot welding of carbon fiber-reinforced polyamide 66 laminate. Mater. Lett. https://doi.org/10.1016/j.matlet.2015.08.036
21. Ray, S., Easteal, A.J., 2007. Advances in polymer-filler composites: Macro to nano. Mater. Manuf. Process. 22, 741–749. https://doi.org/10.1080/10426910701385366
22. Justo, J., Távara, L., García-Guzmán, L., París, F., 2018. Characterization of 3D printed long fibre reinforced composites. Compos. Struct. 185, 537–548. https://doi.org/10.1016/j.compstruct.2017.11.052
23. Singh, R., Bedi, P., Fraternali, F., Ahuja, I.P.S., 2016. Effect of single particle size, double particle size and triple particle size Al2O3in Nylon-6 matrix on mechanical properties of feed stock filament for FDM. Compos. Part B Eng. 106, 20–27. https://doi.org/10.1016/j.compositesb.2016.08.039
24. Zhu, J., Zhu, H., Njuguna, J., Abhyankar, H., 2013. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel). 6, 5171–5198. https://doi.org/10.3390/ma6115171
25. Feng, X., Yang, Z., Wang, Q., Wang, S., Xie, Y., 2018b. Data on the mechanical and thermal properties of 3D printed nanocellulose reinforced methacrylate composites. Data Br. 1–9. https://doi.org/10.1016/j.dib.2018.01.006
26. Tu, T., Jiang, G., 2017. SiC reticulated porous ceramics by 3D printing, gelcasting and liquid drying. Ceram. Int. 0–1. https://doi.org/10.1016/j.ceramint.2017.11.133
27. Mohamed, O.A., Masood, S.H., Bhowmik, J.L., 2016. Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl. Math. Model. 40, 10052–10073. https://doi.org/10.1016/j.apm.2016.06.055
28. Mohamed, O.A., Masood, S.H., Bhowmik, J.L., 2017a. Process parameter optimization of viscoelastic properties of FDM manufactured parts using response surface methodology. Mater. Today Proc. 4, 8250–8259. https://doi.org/10.1016/j.matpr.2017.07.167
29. Griffiths, C.A., Howarth, J., De Almeida-Rowbotham, G., Rees, A., Kerton, R., 2016. A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing. J. Clean. Prod. 139, 74–85. https://doi.org/10.1016/j.jclepro.2016.07.182
30. León-Cabezas, M.A., Martínez-García, A., Varela-Gandía, F.J., 2017. Innovative functionalized monofilaments for 3D printing using fused deposition modeling for the toy industry. Procedia Manuf. 13, 738–745. https://doi.org/10.1016/j.promfg.2017.09.130
31. Chong, S., Chiu, H.L., Liao, Y.C., Hung, S.T., Pan, G.T., 2015. Cradle to Cradle (R) Design for 3D Printing. Pres15 Process Integr. Model. Optim. Energy Sav. Pollut. Reduct. 45, 1669–1674. https://doi.org/10.3303/Cet1545279
32. Chen, B., Tang, W., Jiang, T., Zhu, L., Chen, X., He, C., Xu, L., Guo, H., Lin, P., Li, D.,Shao, J., Wang, Z.L., 2017. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy. https://doi.org/10.1016/j.nanoen.2017.12.049
33. Chong, S., Chiu, H.L., Liao, Y.C., Hung, S.T., Pan, G.T., 2015. Cradle to Cradle (R) Design for 3D Printing. Pres15 Process Integr. Model. Optim. Energy Sav. Pollut. Reduct. 45, 1669–1674. https://doi.org/10.3303/Cet1545279
34. Equbal, A., Sood, A., 2014. Metallization on FDM Parts Using the Chemical Deposition Technique. Coatings 4, 574–586. https://doi.org/10.3390/coatings4030574
35. Francis, V., Jain, P.K., 2017. Investigation on the effect of surface modification of 3D printed parts by nanoclay and dimethyl ketone. Mater. Manuf. Process. 6914, 1–13. https://doi.org/10.1080/10426914.2017.1401717
36. Garg, A., Bhattacharya, A., Batish, A., 2017. Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength. Int. J. Adv. Manuf. Technol. 89, 2175–2191. https://doi.org/10.1007/s00170-016-9257-1
37. Jacobsen, E., Bondgaard Nielsen, I., Schjøth-Eskesen, J., Holst Fischer, C., Bo Larsen, P., Nørgaard Andersen, D., 2017. Risk Assessment of 3D Printers and 3D Printed Products.
38. Takagishi, K., Umezu, S., 2017. Development of the Improving Process for the 3D Printed Structure. Sci. Rep. 7, 1–10. https://doi.org/10.1038/srep39852
39. Verstraete, G., Samaro, A., Grymonpré, W., Vanhoorne, V., Van Snick, B., Boone, M.N., Hellemans, T., Van Hoorebeke, L., Remon, J.P., Vervaet, C., 2018. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int. J. Pharm. 536, 318–325. https://doi.org/10.1016/j.ijpharm.2017.12.002
40. Teixeira, B.N., Aprile, P., Kelly, D.J., Thiré, R.M.S.M., 2016. Evaluation of BMSCs response to PLA Scaffolds produced by FDM and Coating with Dopamine and Collagen 2016.
41. Rosales, S., Ferrándiz, S., Reig, M.J., Seguí, J., 2017. Study of soluble supports generation in 3d printed part. Procedia Manuf. 13, 833–839. https://doi.org/10.1016/j.promfg.2017.09.188
42. Dark, I.N.T.H.E., Skin, L., 2008. 3D Printing Filaments , Chemicals & Accessories.