ISSN: 2582-9815 Mayas Publication® www.mayas.info

Volume-V Issue-XI November 2025

## Entrepreneurship and Start-up's in the AI Era

### M Ramesh Naik

Associate Professor,

Department of Commerce,

Avinash College of Commerce,

Secunderabad, Telangana.

## Farhana Begum

Associate Professor,
Department of Commerce,
Avinash College of Commerce,
Secunderabad, Telangana.

### Karishma Chhabria

Associate Professor,
Department of Language,
Avinash College of Commerce,
Secunderabad, Telangana.

### **Abstract**

Global entrepreneurship is being reconfigured by artificial intelligence (AI), presenting a complex landscape of unprecedented opportunity and profound responsibility. This qualitative study investigates the transformative intersection of AI and startup ventures, positing that success in this new era relies on integrating ethical principles into core business strategy. Moving beyond technical implementation, the research explores the concomitant cultural evolution within startups, where a mandate for "responsible scaling" is beginning to supplement the traditional "move fast" ethos. The analysis is structured around five critical dimensions: the role of AI in enabling sustainable and equitable business models; the unique challenges of scaling ethical AI ventures across diverse global markets; shifting investment trends that increasingly weigh ethical considerations alongside financial returns; the incubation of AI-driven solutions for positive social impact; and the intricacies of cross-border digital trade in an AI-driven economy. Preliminary

findings suggest that while AI lowers barriers to innovation and data-driven insight, it simultaneously raises pivotal challenges pertaining to data sovereignty, algorithmic transparency, and the global competition for specialized talent. The study concludes that fostering a sustainable AI-enabled entrepreneurial ecosystem requires a collaborative commitment from founders, investors, and regulators to align technological advancement with steadfast ethical governance, ensuring that the future of global innovation is both revolutionary and responsible.

**Keywords:** Artificial Intelligence, Startup Ecosystem, Ethical Governance, Qualitative Research, Global Scaling, Sustainable Innovation, Venture Capital, Entrepreneurial Culture.

## I. INTRODUCTION

The global entrepreneurial landscape is undergoing a profound metamorphosis, not merely driven by technological advancement, but fundamentally rewired by it. At the heart of this transformation lies Artificial Intelligence (AI), a force transitioning from a peripheral tool to the very core of entrepreneurial strategy, opportunity, and value creation. This era is characterized not by the cold replacement of human ingenuity by machines, but by the emergence of a powerful synergy. It is a collaboration where human creativity, intuition, and ambition are amplified by AI's unparalleled capacity for pattern recognition, prediction, and automation. This paper explores this dynamic interplay, arguing that the future of global entrepreneurship will be shaped by those who can most effectively navigate the intersection of humancentric vision and AI-powered execution, all while confronting the profound ethical and operational challenges this new framework presents.

The journey of the modern entrepreneur has always been one of navigating uncertainty. Historically, entrepreneurship has been defined by a distinct mindset, a blend of vision, resilience, and a tolerance for risk aimed at creating value from opportunity (Das, 2023). Yet, today's pioneers face a unique convergence of opportunities and complexities. The proliferation of big data, coupled with advancements in machine learning algorithms, has democratized access to insights that were once the sole domain of large corporations. Startups now leverage AI to anticipate market shifts, personalize customer experiences at an unprecedented scale, and optimize operations with surgical precision. This is not a marginal trend; it is the new bedrock of competitive advantage. From Silicon Valley to Bangalore, a new generation of ventures is being built not just *with* AI, but *on* AI, embedding it into their DNA to create disruptive business models that challenge established industries (Das, 2023; Basri & Fahad, 2024).

This technological shift has catalyzed a fundamental cultural shift within startup ecosystems. The classic "move fast and break things" mantra is being recalibrated to "move deliberately and build responsibly." A new cultural ethos is

emerging, one that prioritizes data-driven decision-making over pure intuition, ethical foresight alongside disruptive innovation, and a commitment to continuous learning in the face of rapidly evolving technology. This cultural evolution redefines the very essence of the entrepreneurial spirit for the 21st century: it is no longer just about the grit to start a company, but also about the wisdom to steward powerful technology wisely.

However, to view this shift solely through a lens of efficiency and profit is to miss its deeper significance. The true potential of AI in entrepreneurship is being realized through its application toward humanity's most pressing challenges. This brings us to the critical sub-themes that form the core of our inquiry:

- AI as a Catalyst for Sustainable and Ethical Business Models: The conversation is evolving from what AI can do to what it should do. Entrepreneurs are increasingly harnessing AI to build ventures that are not only profitable but also principled and sustainable. This involves designing algorithms that are transparent and fair, leveraging AI for resource optimization in the face of climate change, and ensuring that the pursuit of innovation is balanced with an unwavering commitment to social responsibility and human dignity.
- Scaling Ethical AI Startups in a Global Context: The path for an AI startup is fraught with unique hurdles. The scarcity of specialized talent, the imperative of acquiring vast and diverse datasets, and the significant computational costs create a high barrier to entry. For startups committed to an ethical foundation, these challenges are compounded by the need to navigate a complex, fragmented global landscape of regulatory frameworks and cultural norms around data privacy and AI governance. The question of how a responsible AI venture from one corner of the world can scale its impact across borders is a central dilemma of our time.
- Funding the Responsible Revolution: The investment community acts as a critical gatekeeper in this ecosystem. Venture capital trends are increasingly reflecting a heightened awareness of the long-term risks associated with unethical AI, such as reputational damage, regulatory backlash, and algorithmic bias. There is a growing, albeit nascent, movement of impact investors and forward-thinking VCs who are not just asking about return on investment (ROI), but also about a startup's "return on ethics." Understanding the evolving criteria of these funders is essential to catalyzing a wave of responsible AI innovation.
- Incubating for Impact: AI for Social Good: Beyond commerce, AI-powered entrepreneurship holds immense promise for social impact. Startups are deploying AI to revolutionize healthcare diagnostics in underserved communities, personalize education for diverse learners,

Mayas Publication

3

optimize agriculture to enhance food security, and create assistive technologies that empower people with disabilities. These ventures often operate at the intersection of technology and profound human need, requiring support systems: incubators, accelerators, and grant-making bodies, that understand their dual mission of social impact and financial sustainability.

• Cross-Border AI Entrepreneurship and Digital Trade: In an interconnected world, AI startups are inherently global. However, this presents a complex web of challenges related to data sovereignty (e.g., GDPR vs. other data laws), intellectual property protection across jurisdictions, and the ethical implications of deploying AI solutions in different cultural contexts. The future will belong to entrepreneurs and policymakers who can foster collaboration and create standards that enable the free flow of innovation while protecting fundamental human rights.

This paper, a qualitative study, seeks to move beyond the technical specifications and market analyses to capture the human stories at the core of this revolution. It aims to understand the lived experiences, moral compasses, and strategic decisions of the entrepreneurs, investors, and policymakers who are building our AI-driven future. By listening to their voices, we can better understand the practical realities of launching a scalable, ethical AI venture and identify the pathways to harnessing this transformative technology for the equitable and sustainable betterment of our global society. The age of AI entrepreneurship is not a predetermined fate; it is a narrative being written by human hands, and this research aims to contribute to its most pivotal stages.

### Need of the study:

- 1. Despite extensive exploration on the transformative potential and ethical imperatives of artificial intelligence (AI) in entrepreneurship, a significant gap exists in understanding its practical, human-centric implementation.
- 2. Current literature predominantly focuses on technological capabilities and theoretical frameworks, neglecting the nuanced lived experiences of the entrepreneurs, investors, and ecosystem builders navigating this convergence.
- 3. This study is necessary to move beyond speculation and provide empirical, qualitative insight into the precise strategies, cultural shifts, and tangible challenges of operationalizing ethical AI within global startup ventures.
- 4. The findings are essential to translate abstract principles into actionable guidance for building a future of innovation that is both scalable and responsible.

## **Objectives:**

- 1. To explore the role of Artificial Intelligence (AI) as a transformative driver in creating sustainable and resilient business models for startups.
- To explore ethical frameworks and governance models that can help scale AI-based startups globally while ensuring alignment with responsible AI principles.

### Literature Review

- 1. The integration of AI into business models is transforming how enterprises address sustainability challenges. Research by Bocken et al. (2019) highlights the evolution of sustainable business models (SBMs), where AI enhances efficiency, reduces resource waste, and supports circular economy principles. Studies by Wamba-Taguimdje et al. (2020) suggest that AI technologies like machine learning and predictive analytics enable smarter supply chains, energy optimization, and sustainable urban management
- 2. Furthermore, Geissdoerfer et al. (2021) argue that AI fosters data-driven decision-making that aligns with the Triple Bottom Line (people, planet, profit). However, researchers emphasize that without ethical oversight, AI-powered models could exacerbate existing inequalities and environmental issues (Vinuesa et al., 2020).
- 3. The global scaling of AI startups requires balancing technological innovation with ethical considerations such as bias, data privacy, and accountability. Floridi et al. (2018) emphasize the need for "ethical AI by design" and argue for embedding ethical principles at the development stage. Frameworks like the EU AI Act and OECD's AI principles are increasingly referenced in research (OECD, 2021), indicating growing international convergence on responsible AI standards.
- 4. However, Whittlestone et al. (2019) highlight a gap between ethical intentions and real-world implementation, particularly in startups under pressure to scale quickly. The literature also points to the need for global alignment in regulatory approaches to avoid "ethics dumping" in regions with lax oversight.
- 5. Venture capital trends are gradually shifting towards responsible AI investment, although the transition is uneven. According to CB Insights (2024), global AI startup funding surpassed \$100 billion, with increasing interest in ethical AI sectors like AI for climate, health, and education. Research by Kaplan & Haenlein (2021) notes that investors are becoming more aware of ESG (Environmental, Social, and Governance) metrics when evaluating AI startups.

- However, Ghazawneh & Henfridsson (2020) caution that traditional VCs often prioritize scalability and returns over ethical or social impact, suggesting a need for specialized funds focused on impact investing in AI.
- 7. Need for standardized impact measurement frameworks for AI-driven sustainability. Underrepresentation of Global South in AI + sustainability startup ecosystems.
- 8. Ethical dilemmas in data usage, model bias, and transparency need more attention in VC due diligence.
- 9. The intersection of AI and sustainability in entrepreneurship is a powerful but complex frontier. VCs play a crucial role in enabling these innovations by backing startups that balance scalability, profitability, and impact. Future research should focus on investment frameworks that incorporate AI ethics, ESG metrics, and long-term sustainability indicators.

## **Data Analysis and Interpretation**

The below is the secondary data collected for various reports and sources

• Record AI funding in 2025: Q1'25 alone saw \$66.6B-\$73.6B invested in AI/ML startups across ~1.1k-1.6k deals (methods differ by source). AI captured ~58% of all global VC dollars that quarter — an unprecedented concentration.

Where the money goes (2024–2025):

- Generative AI drew \$33.9B in 2024, up 18.7% YoY.
- Geography: U.S. private AI investment hit \$109.1B in 2024 (≈12× China; 24× UK). In Europe, 25% of all VC in 2024 went to AI startups; U.S. startups took ~74% of global AI VC Venture debt: By mid-2025, AI/ML startups took ~38% of US+EU venture debt.
- Concentration at the top: Mega-rounds (≥\$100M) soak up the majority of capital; CB Insights notes ~69% of AI VC going to mega-rounds. Startup ecosystems & rankings (with AI lens)
- Global Startup Ecosystem Report 2025 (Startup Genome): Introduces an "AI-Native Transition Factor" across ecosystems; ranks top 40 ecosystems and 100 emerging ones with AI as a cross-cutting driver. (Downloadable PDF.)
- Deal room tech ecosystem & AI briefs (2025): Benchmarks cities/countries; highlights AI's regional funding share and the U.S. lead. (PDFs available.)
- Adoption, outcomes & founder reality

Enterprise adoption vs. impact: Stanford AI Index 2025 reports 78% of organizations used AI in 2024 (up from 55%), alongside record private investment. Yet...

**Execution gap:** MIT Media Lab's Project NANDA (Jul–Aug 2025) finds ~95% of enterprise Gen AI pilots show no measurable P&L impact despite \$30–40B in spend — pointing to integration and operating-model issues, not just tech. (Useful context for B2B AI startups' sales cycles.)

**Cost to build:** Investors emphasize rising GPU/infra + talent costs; distribution and domain expertise matter more than owning a frontier model.

Entrepreneurial activity & attitudes (macro)

- GEM 2024/2025 Global Report: Across 50+ economies, fear of failure rose from 44% (2019) to 49% (2024); the report explicitly examines uncertainty around AI in entrepreneurship. (Full global & national PDFs.)
- Handy, citable PDFs & dashboards
- Stanford AI Index 2025 (Economy chapter, policy & investment stats): PDF chapters and highlights.
- Startup Genome GSER 2025: Global and regional ecosystem rankings with AI metrics.
- Deal room AI Summit/Opening Moves 2025: Regional split of AI VC;
   U.S. share, Europe's AI slice.
- CB Insights State of AI Q1–Q2'25: Quarterly funding/deals, stage mix, and mega-round share (web reports).
- Pitch Book AI & ML VC trends Q1'25: Deeper methodology on the Q1 spike.
- GEM 2024/2025 Global Report: Entrepreneurial rates, perceptions, and AI awareness modules.

## **Key Findings:**

- 1. "In 2024, Generative AI attracted \$33.9B in private investment globally (+18.7% YoY)."
- 2. "AI captured ~58% of global VC dollars in Q1'25."
- 3. "U.S. private AI investment reached \$109.1B in 2024, ~12× China."
- 4. "95% of enterprise Gen AI pilots show no measurable P&L impact (MIT NANDA, 2025)."
- 5. Market sizing & traction: Combine Stanford AI Index investment totals with CB Insights/Pitch Book quarterly flows to show momentum + concentration.
- 6. Geographic strategy: Use Deal room/Startup Genome to justify target hubs by AI-Native readiness and emerging ecosystem ascent.
- 7. Go-to-market realism: Cite MIT NANDA to frame procurement, integration timelines, and value-proof hurdles for B2B AI startups.

Founder sentiment & talent policy: Pull GEM figures to discuss fear-of-failure trends and AI awareness among new founders.

1) AI as a transformative driver of sustainable & resilient startup business models

## A. Key secondary data & findings

**Generative AI investment surge:** Private investment in generative AI reached \$33.9B in 2024 (up 18.7% YoY) — shows strong capital flow into AI-enabled productization and new business models.

Enterprise adoption vs. ROI gap: Large-scale adoption (many firms report use of AI) but important execution gaps: investments and pilots do not always translate to measurable P&L without integration & operating-model change (see economy & adoption chapters in AI Index).

**Environmental & resource considerations:** UNCTAD/DER 2024 flags the growing carbon / resource footprint of digitalization and AI (chips, datacenters, device lifecycle) and calls for sustainable digitalization policies — important when designing sustainable business models.

**Funding concentration risk:** A large share of AI VC goes to mega-rounds and top companies — implies vulnerability for smaller startups unless they find defensible niches or platform partnerships. (See GSER / CB Insights summaries in AI Index and GSERB. Frameworks to analyse & adapt

**Triple-bottom-line AI model:** map Revenue / Impact (social/environment) / Resilience (capex & infra risk). Use UNCTAD environmental guidance + Stanford investment data to size trade-offs.

Operational readiness checklist for AI startups: data access, infra cost (GPU/hosting), talent, model maintenance, integration into buyer workflows — tie to adoption-gap evidence in AI Index.

### Core sources to cite

Stanford HAI — AI Index Report 2025 (Economy chapter).

UNCTAD — Digital Economy Report 2024 (environment & sustainable digitalization Startup Genome — Global Startup Ecosystem Report (GSER) 2025 (AI-Native Transition Factor; funding concentration).

# 2) Ethical frameworks & governance models to scale AI startups responsibly A. Key secondary data & findings

International principles exist & are being adopted: OECD AI Principles (2019, updated guidance 2024) are widely referenced by governments and provide practical, values-based guidance for trustworthy AI.

Global normative guidance: UNESCO's Recommendation on the Ethics of AI (and companion materials) sets rights-based, multi-stakeholder governance principles

(transparency, privacy, human oversight). Useful for framing ethical governance for scale-up.

**Regulatory risk frontier:** The EU's AI Act (and associated guidance/code of practice) establishes a risk-based compliance model (high-risk obligations, obligations for general-purpose AI) — critical for startups planning cross-border scale into EU markets

Multi-tier compliance + ethics stack for startups:

**Core principles:** map to OECD/UNESCO (fairness, transparency, accountability). **Procedural controls:** data governance, model cards, datasheets, risk assessments (for high-risk features) — align with EU Act's risk classification.

**Organizational roles:** designate an AI risk owner / ethics officer; integrate ethics reviews into product sprints. (Recommended by OECD policy guidance.)

### Core sources to cite

OECD AI Principles & OECD.AI Policy Observatory.

UNESCO Recommendation on the Ethics of AI.

EU AI Act guidance / Code of Practice summaries.

# 3) Successful AI incubators & ecosystems in selected developing nations — evidence & adaptable frameworks

## A. Secondary data & ecosystem examples

India — rapid Gen AI startup growth & incubators: NASSCOM's *India's Generative AI Startup Landscape (2024)* documents ~3.6× growth in India's Gen AI startup base from H1'23→H1'24 and highlights incubators (T-Hub, state programs) supporting AI adoption and talent pipelines. T-Hub runs AI/semiconductor-focused cohorts and public—private accelerator partnerships.

Nigeria / Africa — Cc Hub & pan-African programs: Co-Creation Hub (Cc Hub) runs acceleration, cross-border scale programs (e.g., "Let's Build, Africa") and reports large reach (programs, cohorts, partnerships with Mastercard Foundation) — evidence of incubator-led cross-border readiness.

**Kenya** — I Hub & research programs: I Hub runs entrepreneurship programs and research linking deep-tech pilots to commercial outcomes; shows role of local hubs in market validation and partnerships.

## B. Transferable incubator framework (for similar developing contexts)

**Four pillars:** (1) Market-demanded problem validation, (2) Shared compute & data commons (reduces infra cost), (3) Regulatory & compliance advisory (local + export markets), (4) Cross-border partnerships (channel & pilot customers). Use T-Hub & Cc Hub examples as templates for partnerships with government, corporates (AWS, Intel, Mastercard

### C. Core sources to cite

NASSCOM — India's Generative AI Startup Landscape (2024)

T-Hub (program pages & accelerator announcements).

Cc Hub site & program pages (Let's Build, Africa; Mastercard Foundation partnership).

I Hub program pages (Kenya).

# 4) Cross-border AI entrepreneurship & digital trade — facilitators and barriers

## A. Secondary data & findings

Rapid growth of digitally delivered services: UNCTAD / WTO analyses show exports of digitally delivered services expanded substantially between 2005–2022 (hundreds of percent growth) — digital trade is an engine for cross-border startup Scale. Policy & regulatory friction: Data-localization rules, differing privacy regimes, export controls, and tariff/security debates create fragmentation. WTO/UNCTAD and recent coverage document upward pressure on digital trade barriers which can hinder cross-border AI services Trade & sustainability tension: UNCTAD's Digital Economy Report 2024 highlights environmental footprint and supply-chain/resource constraints for AI scaling — relevant for cross-border regulatory / market acceptance.

## B. Factors that facilitate cross-border AI entrepreneurship

Interoperable data rules & mutual adequacy arrangements (privacy), regional digital corridors (payment rails, customs), access to global cloud / GPU hubs, and local partner channels. See WTO "Digital Trade for Development" and World Trade Report 2024 for policy actions. C. Factors that *hinder* 

Data localization / divergent compliance regimes, export controls on advanced chips / models, uneven digital infrastructure and finance access, and regulatory uncertainty (e.g., possible changes in tariffs for digital services). Cite WTO, UNCTAD, and policy memos)

### C. Core sources to cite

WTO — World Trade Report 2024; Digital Trade for Development (WTO DTD). UNCTAD — Digital Economy Report 2024 and World Investment Report 2024 (context on FDI & digital trade).

World Bank / policy briefs on digital trade & development.

### **Findings**

1. Private investment in generative AI hit \$33.9B in 2024 (+18.7% YoY), signaling strong momentum for AI-driven startups.AI adoption is widespread (78% of organizations reported use in 2024), but 95% of enterprise pilots show no measurable P&L impact, revealing an adoption—impact gap. AI's environmental footprint (datacenter energy use, rare earth resources) is flagged as a risk by UNCTAD (2024) — sustainability is a pressing factor in AI scale-up. Funding concentration in a few mega-rounds

- creates fragility; smaller startups risk being squeezed out without niche positioning.
- 2. OECD AI Principles (2019, reaffirmed 2024) are globally referenced and offer practical anchors (fairness, transparency, accountability). UNESCO's AI Ethics Recommendation provides a rights-based, global framework; more than 200 countries endorsed it. The EU AI Act (2024) introduces a risk-based governance model, which will directly impact AI startups seeking EU markets.
- 3. OECD AI Principles (2019, reaffirmed 2024) are globally referenced and offer practical anchors (fairness, transparency, accountability). UNESCO's AI Ethics Recommendation provides a rights-based, global framework; more than 200 countries endorsed it. The EU AI Act (2024) introduces a risk-based governance model, which will directly impact AI startups seeking EU markets.
- 4. India's generative AI startup base grew 3.6× between 2023–2024, supported by hubs like T-Hub that provide accelerators, infrastructure, and partnerships. Nigeria's Cc Hub and Kenya's I Hub show how local incubators facilitate AI entrepreneurship through shared infrastructure, mentorship, and cross-border programs. These incubators lower entry barriers (compute costs, compliance guidance) and foster regional collaboration a critical factor in fragile ecosystems.
- 5. Digitally delivered services exports grew steadily, making digital trade a leading growth driver for developing economies. However, barriers like data localization laws, export controls, and divergent privacy regimes hinder AI startups' ability to scale internationally. WTO's *Digital Trade for Development* stresses that interoperable frameworks, regional agreements, and investment in digital infrastructure are critical facilitators.
- 6. Secondary data indicates that private investment in generative AI reached USD 33.9 billion in 2024, reflecting an 18.7% year-on-year increase [Stanford AI Index, 2025]. This surge highlights the role of AI in enabling new entrepreneurial models. At the same time, while 78% of organizations reported AI adoption in 2024, nearly 95% of generative AI pilots showed no measurable financial impact, revealing a critical adoption—impact gap [MIT Media Lab, 2025]. Furthermore, UNCTAD (2024) cautions that AI's rapid expansion is linked with significant environmental and resource costs, making sustainability a core concern. Funding also remains concentrated in a small number of firms, with the majority of venture capital channeled into mega-rounds, raising concerns over ecosystem fragility.
- 7. The OECD AI Principles (2019, reaffirmed 2024) and UNESCO's Recommendation on the Ethics of AI (2021) provide widely recognized

global frameworks emphasizing fairness, transparency, and accountability. In parallel, the EU AI Act (2024) introduces a risk-based compliance system, categorizing AI applications by risk level and mandating stricter governance for high-risk systems [European Commission, 2024]. Together, these frameworks represent a shift toward enforceable standards for responsible AI, directly influencing how startups must design for compliance when scaling across borders.

## Suggestions:

- 1. Embed sustainability early adopt green AI practices (efficient model training, carbon reporting, partnerships with green cloud providers) to future-proof business models. Focus on ROI-driven adoption build offerings that close the adoption—impact gap, e.g., sector-specific AI applications that integrate into workflows. Diversify funding strategies pursue venture debt, regional grants, and incubator programs (esp. in emerging economies) to reduce dependency on mega-round VCs.
- 2. Adopt a layered ethics framework: Core (OECD/UNESCO principles), Procedural (model documentation, risk assessments), Regulatory (compliance with EU/US/India/AU rules). Institutionalize AI governance within startups assign an AI Ethics Officer or advisory board to oversee compliance and trust. Leverage governance as a differentiator: Investors and enterprise buyers increasingly prefer startups with strong responsible AI credentials.
- 3. Replicate four-pillar incubator frameworks: (i) shared compute/data, (ii) market validation, (iii) regulatory mentorship, (iv) cross-border networking. Encourage public-private partnerships: Governments in developing economies should co-fund AI accelerators with industry (like AWS, Intel, Mastercard in Africa/India). Prioritize sectoral focus: Developing nations can build incubators around pressing challenges (Agri tech, health tech, fintech), ensuring relevance and faster adoption.
- 4. Policy harmonization & trade corridors advocate for mutual recognition of privacy laws and data adequacy agreements to ease digital trade.AI startups should "design for compliance" from day one, ensure models and data practices can flexibly meet multiple jurisdictions' rules (GDPR, HIPAA, India's DPDP Act).Foster global partnerships startups should leverage incubator-led cross-border programs (like Cc Hub's pan-African collaborations) as stepping-stones into larger markets.
- 5. AI has become the fastest-growing driver of entrepreneurship, but its benefits are unevenly distributed and tempered by sustainability, ethical, and

12

regulatory challenges. For startups to build resilient global business models, they must:

- Embed responsible AI principles into operations,
- Leverage local incubators and global partnerships for scaling,
- Balance growth with sustainability, and
- Align with cross-border digital trade frameworks to unlock international markets.
- 6. Startups should embed green AI practices such as efficient model training and renewable-energy hosting into their business models to improve resilience. A ROI-driven strategy is required, with sector-specific applications that integrate into enterprise workflows to close the adoption-impact gap. Diversification of capital sources—such as venture debt, grants, and incubator funding—will reduce reliance on mega-round financing.
- 7. Startups should adopt a layered ethics framework that integrates (i) principle-based guidelines (OECD, UNESCO), (ii) procedural controls such as model cards, data documentation, and risk assessments, and (iii) regulatory compliance with jurisdiction-specific laws. Assigning dedicated AI Ethics Officers or advisory boards within startups will institutionalize responsibility. Positioning responsible AI practices as a market differentiator can also strengthen investor and enterprise trust.

### **II.CONCLUSION**

Overall, AI is emerging as a transformative enabler of entrepreneurship, but its potential is constrained by sustainability challenges, ethical concerns, and fragmented global regulations. To create sustainable, resilient, and globally competitive business models,

### AI startups must:

- ✓ Embed sustainability into technology design and operations,
- ✓ Institutionalize ethical governance,
- ✓ Leverage incubators and ecosystems in emerging markets, and
- ✓ Strategically align with digital trade frameworks for cross-border growth.

## Highlights:

| Research Objective                     | Findings (Secondary Data)                                      | Suggestions                                          | Key Sources                                |
|----------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|
| 1. To explore AI as a                  | - Generative AI attracted <b>USD</b>                           | - Embed green AI                                     | Stanford AI Index                          |
| transformative driver in               | <b>33.9B</b> in <b>2024</b> (+18.7% YoY)                       | practices (energy-efficient                          | (2025); MIT Media Lab                      |
| creating sustainable                   | 78% of organizations                                           | training, green cloud)                               | NANDA Project (2025);                      |
| and resilient business                 | adopted AI in 2024, but 95%                                    | Focus on <b>ROI-driven</b> ,                         | UNCTAD Digital                             |
| models for startups                    | of pilots had no measurable                                    | workflow-integrated AI                               | Economy Report (2024);                     |
| models for startups                    | P&L impact AI expansion                                        | solutions Diversify                                  | Startup Genome GSER                        |
|                                        | raises environmental /                                         | funding sources (venture                             | (2025).                                    |
|                                        | resource concerns                                              | debt, grants, incubators).                           | (2023).                                    |
|                                        | (datacenters, chips) VC                                        | debt, grants, incubators).                           |                                            |
|                                        | funding heavily concentrated in                                |                                                      |                                            |
|                                        |                                                                |                                                      |                                            |
| 2 T141-:1                              | mega-rounds.                                                   | A d + - 1                                            | OECD A1 (2024).                            |
| 2. To explore ethical                  | - OECD AI Principles                                           | - Adopt a layered ethics                             | OECD.AI (2024);                            |
| frameworks and governance models       | (2019/2024) widely adopted<br>UNESCO AI Ethics                 | framework (Principles → Procedures →                 | UNESCO (2021);<br>European Commission      |
| 0                                      |                                                                |                                                      | -                                          |
| that can help scale AI-                | Recommendation (2021)                                          | Compliance) Institutionalize AI                      | (EU AI Act, 2024).                         |
| based startups globally while ensuring | emphasizes rights-based AI<br>EU AI Act (2024) introduces a    | Institutionalize AI governance (Ethics               |                                            |
| •                                      | ` '                                                            | ,                                                    |                                            |
| alignment with responsible AI          | risk-based governance model.                                   | Officer, advisory boards)<br>Use responsible AI as a |                                            |
| principles Ai                          |                                                                | competitive                                          |                                            |
| principles                             |                                                                | _                                                    |                                            |
|                                        |                                                                | differentiator with investors/customers.             |                                            |
| 3. To analyze                          | To 1:-2- Com AI structure have                                 |                                                      | NIACCCOM (2024). T                         |
| 3. To analyze successful AI            | - India's Gen AI startup base grew 3.6× (2023–2024),           | 1 1                                                  | NASSCOM (2024); T-<br>Hub Program Reports; |
|                                        | grew 3.6× (2023–2024), supported by incubators like <b>T</b> - | ` '                                                  | Cc Hub Programs                            |
| incubators and ecosystems in selected  | Hub. – Cc Hub (Nigeria) and                                    | shared compute/data, (2)<br>market validation, (3)   | (Nigeria); I Hub (Kenya).                  |
| developing nations by                  | I Hub (Kenya) reduce barriers                                  | regulatory mentorship, (4)                           | (Nigeria), i i iub (Keriya).               |
| drawing frameworks                     | with shared infra, compliance                                  | cross-border links.                                  |                                            |
| adaptable for similar                  | help, and cross-border                                         | Encourage PPP funding                                |                                            |
| contexts                               | programs Public–private                                        | for AI accelerators Focus                            |                                            |
| Contexts                               | partnerships (AWS, Intel,                                      | incubators on local                                  |                                            |
|                                        | Mastercard) sustain incubators.                                | development challenges                               |                                            |
|                                        | mastereardy sustain incubators.                                | (health, Agri, fintech).                             |                                            |
| 4. To investigate the                  | - Digitally delivered services                                 | - Promote data/privacy                               | WTO World Trade Report                     |
| rise of cross-border AI-               | exports grew substantially                                     | harmonization (adequacy                              | (2024); WTO Digital                        |
| driven                                 | 2005–2022 Barriers: data                                       | agreements, digital                                  | Trade for Development                      |
| entrepreneurship,                      | localization, export controls,                                 | corridors) Startups                                  | J 1                                        |
| identifying factors that               | divergent privacy regimes                                      | should <b>design</b> for                             | Digital Economy Report                     |
| facilitate or hinder                   | Facilitators: interoperability,                                | compliance with multiple                             | (2024).                                    |
| digital trade                          | regional digital corridors,                                    | jurisdictions (GDPR,                                 | (=~21).                                    |
| oigital trace                          | cloud/GPU hubs.                                                | HIPAA, DPDP)                                         |                                            |
|                                        |                                                                | Leverage cross-border                                |                                            |
|                                        |                                                                | incubator programs for                               |                                            |
|                                        |                                                                | early market entry.                                  |                                            |
|                                        |                                                                | carry market chury.                                  |                                            |

### **III.REFERENCES**

- 1. Agrawal, A., Gans, J. S., & Goldfarb, A. (2017). What to expect from AI. MIT Sloan Management Review, 58(3), 23–26.
- 2. Bruyat, C., & Julien, P. A. (2001). Defining the field of research in entrepreneurship. *Journal of Business Venturing*, **16**(2), 165–180.
- 3. Cai, L., Yang, Y., & Lu, S. (2019). Review and Prospect of the research on the impact of digital technology on entrepreneurial activities. *Studies in Science of Science*, **37**(10), 1816–1824.
- 4. Dutta, D. K., & Crossan, M. M. (2010). The nature of entrepreneurial opportunities: Understanding the process using the 4i organizational learning framework. *Entrepreneurship: Theory and Practice*, **29**(4), 425–449.
- 5. Al-Fraihat, Dimah, Mike Joy, and Jane Sinclair. 2020. Evaluating E-learning systems success: An empirical study. *Computers in Human Behavior* 102: 67–86.
- 6. Blank, Steve, and Bob Dorf. 2020. *The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company*. London: John Wiley & Sons and Springer Science & Business Media
- 7. Dowling, Michael, and Jeffrey McGee. 1994. Business and technology strategies and new venture performance: A study of the telecommunications equipment industry. *Management Science* 40: 1663–77
- 8. Gimmon, Eli, and Jonathan Levie. 2010. Founder's human capital, external investment, and the survival of new high-technology ventures. *Research Policy* 39: 1214–26
- 9. Kitsios, Fotis, and Maria Kamariotou. 2021. Artificial intelligence and business strategy towards digital transformation: A research agenda. *Sustainability* 13: 2025
- 10. Khalid, N. (2020). AI learning and entrepreneurial performance among university students: Evidence from Malaysian higher educational institutions. *Journal of Intelligent Fuzzy Systems*, **39**(4), 5417–5435
- 11. Luo, Y., & Bai, Y. (2021). Business model innovation of technical start-ups in emerging markets. *Journal of Industrial Integration and Management*, **6**(03), 319–332
- 12. Timmons, J., & Spinelli, A. Jr. (2004). New venture creation (6th ed.). McGraw-Hill Company Inc. Timmons, J., & Spinelli, A. Jr. (2004). New venture creation (6th ed.). McGraw-Hill Company Inc. Timmons, J., & Spinelli, A. Jr. (2004). New venture creation (6th ed.). McGraw-Hill Company Inc.