Emperor Journal of Marketing

ISSN:2583-0686 Mayas Publication[®] www.mayas.info

Volume-V Issue-II February-2025

A Study on Customer Satisfaction towards Electric Vehicle Buying in Tiruchirappalli City

Dr.A. Ansar Ali

Assistant Professor in Commerce
PG & Research Department of Commerce
Jamal Mohamed College(Autonomous), Tiruchirappalli- 52

S. Vinoth Kumar

II M.Com A, PG& Research Department of Commerce Jamal Mohamed College(Autonomous), Tiruchirappalli- 52

Abstract

The rapid adoption of electric vehicles (EVs) has transformed the global industry. Electric vehicles (EVs) area technology for achieving a sustainable transport sector in the future, due to their very low to zero carbon emissions, low noise, high efficiency, and flexibility in grid operation and integration. This chapter includes an overview of electric vehicle technologies as well as associated energys torage systems and charging mechanisms. Differenttypesofelectric-drive vehicles are presented. These include batteryelectricvehicles, pluginhybridelectricvehicles, hybrid electric vehicles and fuel cell electric vehicles. The topologies for each category and the enabling technologies are discussed. Various power train configurations, new battery different technologies, and charger converter topologies are introduced. Electrifying transportation not only facilitates a clean transition, but also enables the diversification of transportation's sector fuel mix and addresses energysecurity concerns. In addition, this can be also seen as a viable solution, in order to alleviate issues associated with climate change.

Furthermore, charging standards and mechanisms and relative impacts to the grid from charging vehicles are also presented.

Keywords:Electric vehicles, Battery Capacity, Energy Usage, Range(mileage), Development power, Customers Satisfaction.

I. INTRODUCTION

Electric vehicles are increasingly seen as a sustainable alternative to conventional internal combustion engine vehicles. Governments worldwide are incentivizing EV adoption to reduce carbon emissions and combat climate change. India is one of the top ten automotive markets in the world and given its burgeoning middle class population with buying potential and the steady economic growth, acceleration automotive sales is expected to continue. In the last couple of years, there has been a lot of discussion around the prices of fuel - apart from the deregulation of petrol prices. Moreover the threat of disruption of supplies fromthemiddleeasthasheightenedthedebateonenergysecurityandbroughtth efocusontoalternate drivetrain technologies. The potential for alternative technologiesinautomobilessuchaselectricvehicles(EV)inIndia,asin the case of many other comparable markets, depends on improved battery technologies, driving ranges, government incentives, regulations, lower prices and better charging infrastructure. There seems to be a lot of interest on the part of Internal Combustion Engine (ICE) based manufacturers to adopt electric technology, not just supplemental to the ICE, but as a stand-alone offering. There are also specialized EV manufacturers that have come up all over the world. While manyof the factors that influence the EV market are understood intellectually, we carried out a consumer survey to study perceptions and expectations of potential for alternative technologies in automobiles such as electric vehicles (EV) and hybrid EV. Assessing future demand for electric vehicles was somewhat challenging since it meant testing consumer preferences for a product with which they are largely unfamiliar. For this reason we focused on uncovering consumers familiarity with EV technologies and products; with their opinions aroundprice, brand, range, charging, the infrastructure, and the cost ofownership; and with the consumer's imagined —fit of an EV in his or her lifestyle given a range of demographic parameters.

Objectives of the study Primary Objective

- To study the perceptions and expectation s of potential, for alternative technologies in automobiles, such as Electric Vehicles.
- To assess customer satisfaction levels with EVs.

SecondaryObjective

- Toknowwhyelectricvehiclecouldn'tgetenoughconsumer attraction.
- To study the willingness of buyers of considering Electric Vehicles as a practical commuting option and at when.
- Tostudythe maximumpriceconsumers canafford forbuyingan Electric Vehicles.

Scope of the Study

As electric vehicle manufacturing is **becoming popular every day**, its market share is also expected to rise greatly. India's GDP is expected to grow byan amazing 25% by 2022. The best part is that, apart from reducing environmental pollution, EVs can lower oil import by about \$60 Billion by 2030.

Limitation ofs tudy

- Due to efficiency of electric engines as compared to combustion engines, even when the electricity usedtochargeelectricvehiclescomesfromaCO2-emittingsource, such as a coal-orgas fired powered plant, the net CO2 production from an electric car is typically one-half to one-third of that from a comparable combustion vehicle.
- Electric vehicles release almost no airpollutants at the place where they are operated.
- Inaddition, it is generally easier to build pollution-control systems into centralised power stations than retrofit enormous numbers of cars.

Research Methodology

ResearchDesign

The descriptive research design is used in this study.

Sourcesof Data Primary Data

PrimaryDataiscollectedfromthepeoplesinTiruchirappalliCity.

Secondary Data

SecondaryData is collected from books, websites, articles and internet.

Sample Design

Population

PeoplesinTiruchirappalliCity.

SampleSize

Samplesizeof50respondents from Tiruchirappalli.

SamplingMethod

ConvenienceSamplingMethodhasbeenusedforthisstudy.

Method of Data Collection

DataiscollectedthroughStructuredQuestionnaire.

Tools for Analysis

PercentageAnalysis

Data Analysis and Discussion

Professionoftherespondents

S.No.	Profession	No of Respondents	Percent
1	Student	21	42
2	SelfEmployed	8	16
3	GovernmentJob	1	2
4	PrivateJob	20	40
Total		50	100

Interpretation

According to the table 4.1.1, 42% of the respondents was under the student, 16% of the respondentswasunderthe Self Employed,40% of the respondents was under the Privatejoband2% of the respondents was under the Government job.

Gender of the Respondents

S.NO	Gender	No of Respondents	Percent
1	Male	35	70
2	Female	15	30
Total		50	100

Interpretation

According to the 4.1.2, 70 percentage of the respondents were Male and 30 percentage of the respondents were Female.

Mode of Transport	ation of Respondents
-------------------	----------------------

S. No	Mode of Transportation	No of Respondents	Percent
1	Ownvehicle	32	77.6
2	Taxi/Auto	3	4.2
3	Publicbus	6	7
4	Train	8	10.2
Total		49	100

Interpretation

According to the table 4.1.6, 77.6% of the respondents using own vehicle, 4.2% of the respondents using Taxi/Auto, 7% of the respondents using public bus and 10.2% of the respondents using Train.

Review of literature

Numerous studies have explored various dimensions of customer satisfaction with EVs. According to Smith and Brown (2022), performance reliability, environmental impact, and operational cost are primary drivers of satisfaction among EV users. Their study emphasizes that consumers value the reduced carbon footprint and lower fuel costs associated with EVs, but infrastructure limitations pose significant challenges.

Miller et al. (2021) highlight the importance of charging infrastructure in shaping customer experiences. Their research indicates that insufficient and unevenly distributed charging stations exacerbate range anxiety, a critical barrier to satisfaction. Similarly, the International Energy Agency (2023) reports that advancements in battery technology and extended range capabilities significantly enhance customer perceptions of EV reliability.

Many governments have initiated and implemented policies to stimulate and encourage electric vehicle (EV) production and adoption (Sierzchula, Bakker, Maat, & Van Wee, 2014).

The expectation is that better knowledge of consumer preferences for EV can make these policies more effective and efficient. Many empirical studies on consumer preferences for EV have been published overthelast decades, and a comprehensive literature review would be helpful to synthesise the findings and facilitate a more well-rounded understanding of this topic. Rezvani, Jansson, and Bodin (2015)

Findings

- 1. Majority of the respondents 42% are students.
- 2. Majority of the respondents 70% were Male.
- 3. Majority of the respondents 90% have vehicle.
- 4. Majority of the respondents 95.9% have two wheeler.
- 5. Majority of the respondents 95.9% using they are vehicle in City.
- 6. Majority of the respondents 77.6 % of peoples using they are own vehicle.
- 7. Majorityof the respondents82 %ofthepeople hearabout Electric Vehicle.
- 8. Majorityof the respondents 58 % interest to owning EV.
- 9. Majority of the respondents 45.7 % choicelevel of price 50,000.
- 10. Majorityof the respondents 32,7 %purchasingElectricVehicle.
- 11. Majorityoftherespondents 46% using batteries charge at home.
- 12. Majorityof the respondents 46.9 %want the EV rangeup to 50-100 km.
- 13. Majorityof therespondents 46.9 % usingtheyare EVspeedof 100km.
- 14. Majorityoftherespondents50 %wanttochange batteries therecostwantat 5000.
- 15. Majorityofthe respondents 37.5 % of the people want 30% of governments ubsidies.

Suggestions

- ➤ Drivesmoothly.Simplyput,lead-footed drivingwilldrainyourEV'sbatteryatan accelerated rate.
- SlowDown. Tryto keepyour speedunder 60mph whenever possible.
- ➤ Reduceoreveneliminateyourfuelcosts. Weeklytripstothegasstationtofuelupyo urcarare expensive, especially when the ever-fluctuating price of gasoline is high.
- Reduceemission to help the environment
- ➤ It'sbetter tolet thecapacityrun down to10 or20%, then rechargeto around 80%.
- Currentelectricvehiclestravelabout250milesonacharge,thoughtherearesome, suchasteslas,that can do about 350 miles on a charge.

II. CONCLUSION

Theprocessthattheelectricvehicleindustryhasseeninrecentyearsisnotonlyext remelywelcomed, But highly necessary in light of the increasing global greenhouse gas levels.

As and environment analysis sections of this webpage, the benefits of electric vehicles far sur pass the costs. The biggest obstacle to the widespreadadoptionofelectric-poweredtransportation is cost related, as gasoline and the vehicles that run on it are readily available, convenient, and less costly. As is demonstrated in our timeline, we hope that over the course of the next decade technological advancements and policy changes help ease the transition from traditional fuel- powered vehicles. Additionally, the realization and success of this industry relies heavily on the global population, and it is our hope that through mass marketing and environmental education programs people will feel incentivized and empowered to drive an electric-powered vehicle. Eachperson canmakea difference, so goelectric and helpmake a difference.

III.REFERENCES

- Hills, Stanley Moncoeur. Battery-electric vehicles. London, G. Newnes limited, 1943.232 p.
- Mantell, C.L. Batteries and energy systems. New York, McGraw-Hill, c1983.319
 p.
- Modern batteries:anintroductiontoelectrochemicalpowersources.ColinA.Vincentan dothers. London, Baltimore, E. Arnold, 1984. 264 p.
- Electricandhybridvehicletechnology. Warrendale, Pa., Societyof Automotive Engineers, c1992.91
- p. (SP-915)
- PaperspresentedattheInternationalCongress &Exposition,Detroit,Michigan,February24-28, 1992.
- Electric vehicle design and development. Warrendale, Pa., Societyof Automotive Engineers, c1991. 116 p. (SP-862)
- InternationalCongressandExposition,Detroit,Michigan,Feb.25-Mar. 1,1991.